

Specification Sheet

X3.3-G1 Fuel Optimized

Description

The X3.3 has all the strength and reliability the genset industry has come to expect from the X Series range but in a smaller, lighter and more economical package. The X3.3 features direct fuel injection, resulting in cleaner, quieter and more fuel-efficient performance. With a highly compact 4-cylinder envelope and extremely low heat rejection, the engine offers a high degree of installation flexibility.

Features

MICO direct injection in-line pump for cleaner, more efficient fuel consumption.

Parent bore block with deep, stiff crankcase and optimised rib arrangement to enhance strength and reduce noise.

12-volt electrics package, with starter, alternator and fuel solenoid.

Shallow oil pan and single spin-on oil and Fuel Filter

SAE '3/11.5' flywheel housing

Integrated Design - CoolPac products are supplied fitted with cooling package and air cleaner for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

This equipment has been designed and tested to meet EU product safety regulations. Material compliance declaration is available upon request

Our energy working for you.™ ©2020 Cummins Inc. | X3.3-G1 (12/20)

www.famcocorp.com E-mail: info@famcocorp.com

@famco_group

- 🚺 Tel:071- ۴ ۸ 0 0 0 0 ۴ ۹
- 🕞 Fax:081 ۴۴۹۹۴۶۴۲

تهران، کیلومتر ۲۱ بزرگراه لشگری (جاده مخصوص کرج)

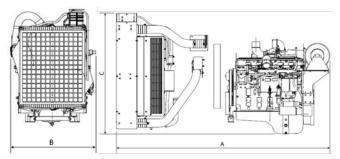
1500 rpm (50 Hz Ratings)

Gross engine output Net engine output			Typical generator set output								
Standby	Prime	Base	Standby	Standby Prime Base			y (ESP)	Prime (PRP)		Base (COP)	
	kWm/BHP			kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA
36/48	32/43	25/34	34/46	31/42	24/32	31	38	28	35	21	27

General Engine Data

Fuel Rating	N/A
Туре	4 cycle, in-line, naturally aspirated
Bore mm	91.4 mm (3.59 in.)
Stroke mm	127 mm (5 in.)
Displacement litre	3.3 litre (205 in. ³)
Cylinder block	Cast iron, 4 cylinder
Battery charging alternator	36 amps
Starting voltage	12-volt
Fuel system	MICO Inline A-Type
Fuel filter	Spin-on fuel filters with water separator
Lube oil filter type(s)	Spin-on full flow filter
Lube oil capacity (I)	8
Flywheel dimensions	SAE 3

Coolpac Performance Data


Coolpac Performance Data	
Cooling system design	Jacket Water After cooled
Coolant ratio	50% ethylene glycol; 50% water
Coolant capacity (I)	11
Limiting ambient temp.** (°C)	50
Fan power (kWm)	1.19
Cooling system air flow (m ³ /s)**	1.76
Air cleaner type	Heavy Duty Dry replaceable element with restriction indicator

** @ 13 mm H₂0

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/hr	US Gal./hr			
Standby P	ower						
100	36	48	10.4	2.7			
Prime Power							
100	32	43	8.5	2.3			
75	24	33	6.1	1.7			
50	16	22	4.3	1.2			
25	8	11	2.8	0.7			
Continuou	Continuous Power						
100	25	34	6.4	1.7			

*Drawing for illustration purposes only.

Weights and Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
1123.29	712.4	841.1	269

Ratings Definitions

Ratings Demitions			
Emergency Standby Power (ESP):	Limited-Time Running Power (LTP):	Prime Power (PRP):	Base Load (Continuous) Power (COP):
Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.	Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.	Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.	Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

X1.3-G2

> Specification sheet

Our energy working for you.™

Description

The X1.3 has all the strength and reliability the industry has come to expect from Cummins Inc., but in a smaller, lighter and more economical package. The X1.3 features direct fuel injection, resulting in cleaner quieter and more fuel efficient performance. The CoolPac system offers a cost effective, fully warranted, high ambient, integrated system solution capable of meeting our customers application requirements.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

The X1.3 engine is built to last, with a cast-iron block designed for durability and reliability. Design elements include:

- Bosch direct injection in-line pump for cleaner, more efficient fuel consumption.
- Heavy Duty Air Cleaner, fitted as standard.
- Parent bore block with deep, stiff crankcase and optimised rib arrangement to enhance strength and reduce noise.
- 12 volt electrics package as standard, with starter, fuel solenoid and electronic governor fitted as standard.
- · Single spin-on Oil Filter and Fuel Filter
- 500 hour Service Intervals
- SAE 4/6.5 flywheel housing

Integrated Design – The X1.3 Coolpac is supplied with cooling package in kit form for OEM mounting. A heavy duty air cleaner is supplied fitted to engine to provide a complete power package. Each component has been has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

Gross Engine Output			Typical Generator Set Output					
Standby Prime Base			Standb	y (ESP)	Prime (PRP)		Base (COP)	
	kWm (BHP)		kWe	kVA	kWe	kVA	kWe	kVA
11.8 (15.8)	10.6 (14.2)	8.3 (11.1)	8.8	11	8	10	5.6	7

1500 rpm (50 Hz Ratings)

General Engine Data

Туре	Inline, 4 cylinder, Diesel
Bore	95mm
Stroke	91mm
Displacement	1.29litre
Cylinder Block	Alloy cast iron, in-line, 2 cylinder
Battery Charging Alternator	Not supplied.
Starting Voltage	12 Volts
Fuel System	Direct Injection
Fuel Filter	Spin-on fuels filter with water separator
Lube Oil Filter Type	Spin on full flow filter
Lube Oil Capacity	4.5 Litre
Flywheel Dimensions	SAE 4/6.5"

Coolpac Performance Data

Cooling System Design	Jacket Water Cooled
Coolant Ratio	
Coolant Capacity (I)	3
Limiting Ambient Temp.**	50degC
Fan Power (Kwm)	0.4
Cooling System Air Flow (m ³ /s)**	12.45
Air Cleaner Type	Heavy Duty (25g/CFM)

** @ 12 mm H²0

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Shipping Weight & Dimensions

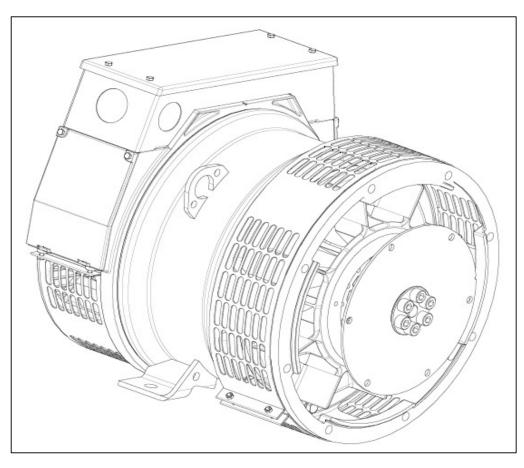
Length	Width	Height	Weight (dry)
mm	mm	mm	kg
950	750	965	265

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph			
Standby Po	ower						
100	11.8	15.8	3.4	0.9			
Prime Power							
100	10.6	14.2	3	0.8			
75	7.94	10.65	2.4	0.6			
50	5.3	7.1	1.8	0.5			
25	2.65	3.55	1.2	0.3			
Continuous	Continuous Power						
100	8.3	11.1	2.5	0.7			

Cummins G-Drive Engines

Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399 Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902 Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729


Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811 North America 1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

PI044E - Technical Data Sheet

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATOR

AS480 AVR fitted as STANDARD

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS480 will support limited accessories, RFI suppession remote voltage trimmer and for the P1 range only a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

The AVR is can be fitted to either side of the generator in its own housing in the non-drive end bracket.

Excitation Boost System (EBS) (OPTIONAL)

The EBS is a single, self-contained unit, attached to the non-drive end of the generator.

The EBS unit consists of the Excitation Boost Controller (EBC) and an Excitation Boost Generator (EBG). Under fault conditions, or when the generator is subjected to a large impact load such as a motor starting, the generator voltage will drop. The EBC senses the drop in voltage and engages the output power of the EBG. This additional power feeds the generator's excitation system, supporting the load until breaker discrimination can remove the fault or enable the generator to pick up a motor and drive the voltage recovery.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted at the non-drive end of the generator. Dedicated single phase generators are also available. A sheet steel terminal box contains provides ample space for the customers' wiring and gland arrangements. Alternative terminal boxes are available for customers who want to fit additional components in the terminal box.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION / IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 9 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

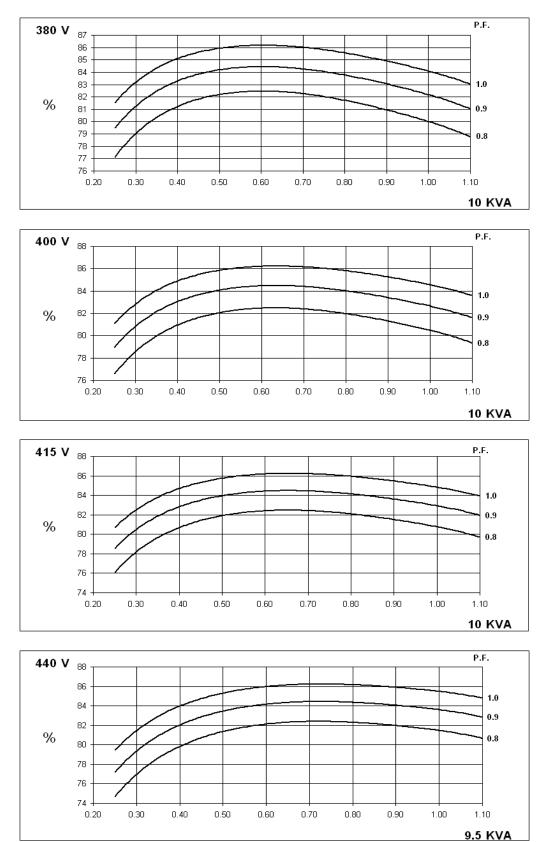
3% for every 5 $^{\circ}$ C by which the operational ambient temperature exceeds 40 $^{\circ}$ C.

Note: Requirement for operating in an ambient exceeding $60 \,^{\circ}$ C must be referred to the factory.

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

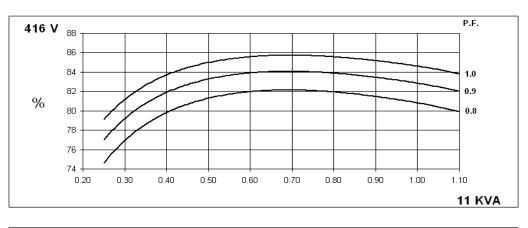
Front cover drawing typical of product range.

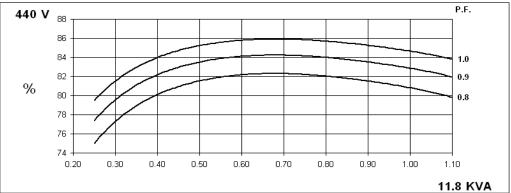
WINDING 311

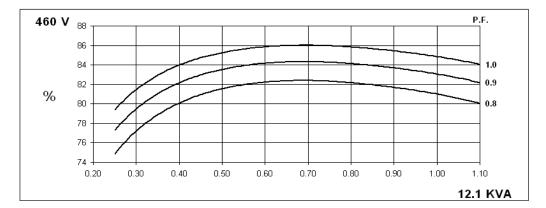

CONTROL SYSTEM	STANDAR	AS480 AV	R (SELF EX						
	± 1.0 %	7 40400 AV		GITED)					
SUSTAINED SHORT CIRCUIT			INES DO NO						
SUSTAINED SHORT CIRCUIT				71 3031AIN	A SHORT				
CONTROL SYSTEM	AS480 AVF	WITH OPT	IONAL EXC	ITATION BC	OST SYST	EM (EBS)			
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR		REMENT CL	IRVE (page	8)			
INSULATION SYSTEM				CLA	SS H				
PROTECTION				IP	23				
RATED POWER FACTOR	0.8								
STATOR WINDING	DOUBLE LAYER CONCENTRIC								
WINDING PITCH				TWO 1	HIRDS				
WINDING LEADS				1	2				
STATOR WDG. RESISTANCE		1 327 0	hms PER PH	ASE AT 22	°C SERIES	STAR CON	NECTED		
ROTOR WDG. RESISTANCE		1.027 0		0.415 Ohn					
EXCITER STATOR RESISTANCE			0.01	17.5 Ohm		0000			
EXCITER ROTOR RESISTANCE			0.21	Ohms PER	-	2270			
EBS STATOR RESISTANCE				12.9 Ohm					
R.F.I. SUPPRESSION							r to factory f		
WAVEFORM DISTORTION	1	NO LOAD <	1.5% NON-	DISTORTIN	G BALANCE	ED LINEAR I	_OAD < 5.0%	6	
MAXIMUM OVERSPEED	2250 Rev/Min								
BEARING DRIVE END				BALL. 6309	- 2RS. (ISO)			
BEARING NON-DRIVE END				BALL. 6306	- 2RS. (ISO)			
	1 BEARING			2 BEARING					
	WITH	EBS	WITHO	JT EBS	WITH	EBS	WITHOU	JT EBS	
WEIGHT COMP. GENERATOR	80	kg	78.3	kg	83	kg	81.3	kg	
WEIGHT WOUND STATOR	27	kg	27	kg	27	' kg 27		7 kg	
WEIGHT WOUND ROTOR	27.87	kg	26.17	7 kg 28.8		8.87 kg 27.17		kg	
WR ² INERTIA	0.0953	kgm ²	0.0952	kgm ²	0.097 kgm ²		0.0953 kgm ²		
SHIPPING WEIGHTS in a crate	100	kg	98.3	kg	109 kg 107			kg	
PACKING CRATE SIZE		71 x 51	x 67 (cm)	-	71 x 51 x 67 (cm)				
		50	Hz			60	Hz		
		THF	<2%			TIF	<50		
COOLING AIR		0.110 m ³ /s	sec 233cfm			0.135 m ³ /s	ec 286 cfm		
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277	
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138	
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138	
kVA BASE RATING FOR REACTANCE		10	10	9.5	11	11.8	12.1	12.5	
VALUES									
Xd DIR. AXIS SYNCHRONOUS X'd DIR. AXIS TRANSIENT	1.86	1.68	1.56	1.32	2.20	2.11 0.21	1.98	1.88	
X'd DIR. AXIS TRANSIENT X''d DIR. AXIS SUBTRANSIENT	0.19	0.17	0.16	0.13	0.22	0.21	0.20	0.19	
Xq QUAD. AXIS REACTANCE	0.12	0.80	0.74	0.63	1.06	1.02	0.15	0.13	
X"q QUAD. AXIS SUBTRANSIENT	0.19	0.17	0.16	0.13	0.23	0.22	0.21	0.20	
XL LEAKAGE REACTANCE	0.07	0.06	0.06	0.05	0.08	0.08	0.07	0.07	
X2 NEGATIVE SEQUENCE	NTIVE SEQUENCE 0.16 0.14 0.13 0.11 0.19 0.18 0.17 0.16								
X0ZERO SEQUENCE	0.08	0.07	0.07	0.05	0.09	0.09	0.08	0.08	
REACTANCES ARE SATURAT	ED	VA	LUES ARE			AND VOLTA	GE INDICAT	ED	
T'd TRANSIENT TIME CONST.					07 s 02 s				
T"d SUB-TRANSTIME CONST. T'do O.C. FIELD TIME CONST.					7 s				
Ta ARMATURE TIME CONST.					73 07s				
SHORT CIRCUIT RATIO					Xd				

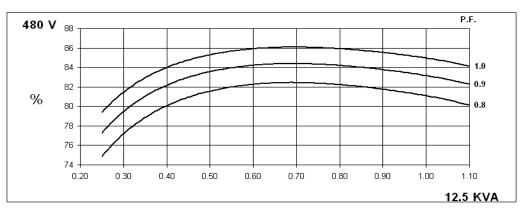
Winding 311

THREE PHASE EFFICIENCY CURVES

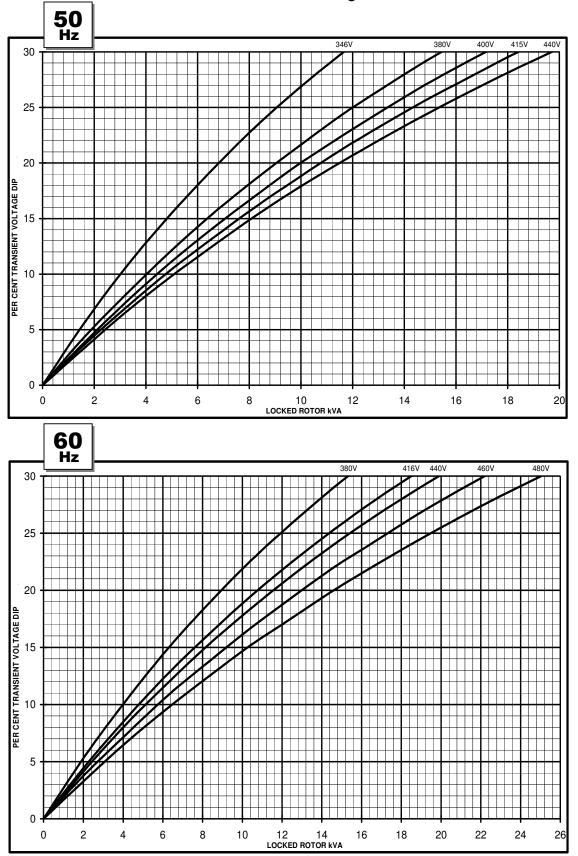


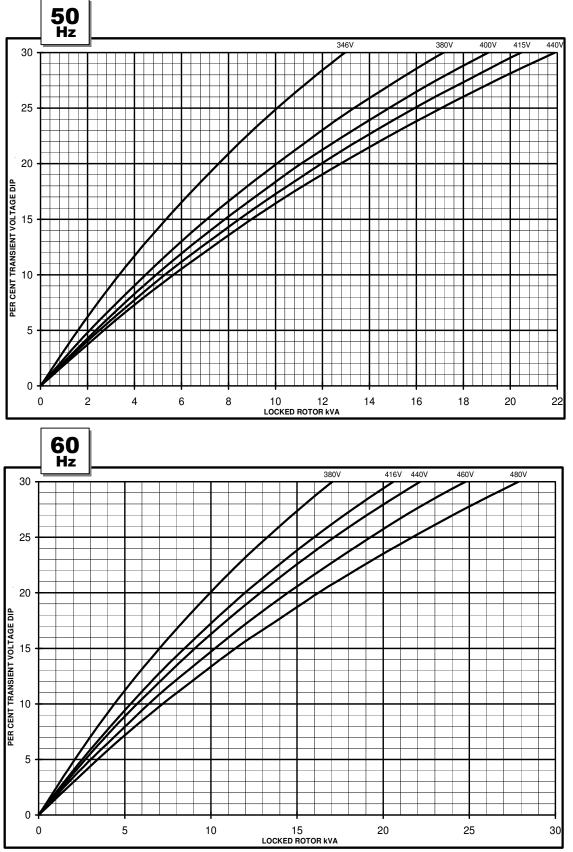



PI044E

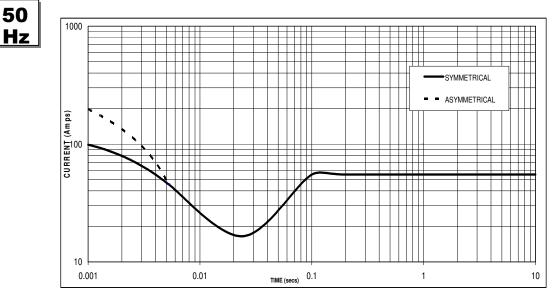

Winding 311

THREE PHASE EFFICIENCY CURVES

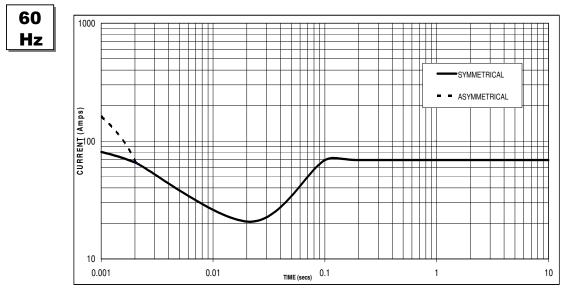




Winding 311 AS480 AVR Without EBS Locked Rotor Motor Starting Curves



Winding 311 AS480 AVR With EBS fitted Locked Rotor Motor Starting Curves



WITH EBS FITTED Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 55 Amps

Sustained Short Circuit = 69 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	X 1.00			
400v	X 1.05	440v	X 1.06			
415v	X 1.09	460v	X 1.10			
440v	X 1.16	480v	X 1.15			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

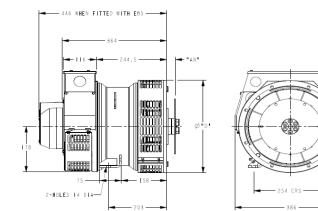
Note 3

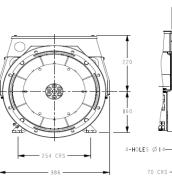
Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

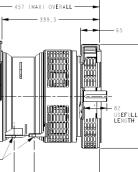
Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

STAMFORD


PI044E


Winding 311 / 0.8 Power Factor


RATINGS

	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	ĉ
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	9.1	9.1	9.1	8.6	10.0	10.0	10.0	9.5	10.8	10.8	10.8	10.3	11.0	11.0	11.0	10.5
	kW	7.3	7.3	7.3	6.9	8.0	8.0	8.0	7.6	8.6	8.6	8.6	8.2	8.8	8.8	8.8	8.4
	Efficiency (%)	80.9	81.3	81.5	82.0	80.0	80.5	80.8	81.5	79.1	79.7	80.0	80.9	78.8	79.4	79.8	80.7
	kW Input	9.0	9.0	8.9	8.4	10.0	9.9	9.9	9.3	10.9	10.8	10.8	10.2	11.2	11.1	11.0	10.4
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
112	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	10.0	10.7	11.0	11.4	11.0	11.8	12.1	12.5	11.9	12.7	13.1	13.5	12.1	12.9	13.3	13.8
	kW	8.0	8.6	8.8	9.1	8.8	9.4	9.7	10.0	9.5	10.2	10.5	10.8	9.7	10.3	10.6	11.0
	Efficiency (%)	81.4	81.5	81.7	81.7	80.8	80.8	81.0	81.1	80.1	80.1	80.3	80.4	80.0	80.0	80.1	80.1
	kW Input	9.8	10.5	10.8	11.2	10.9	11.7	11.9	12.3	11.9	12.7	13.1	13.4	12.1	12.9	13.3	13.8

DIMENSIONS

- 228

- 541 (MAX) WHEN FITTED WITH 'EBS

-Ø42,018

ØF

COUPLIN	NG DISC
SAE	" A N "
6.5	30.2
7.5	30.2
8	62
0	53.8
11.5	39.6

]	APAPTOR	I-BRG /
	Ø"D"	SAE
1	361	5
8-HOLE	405	4
8-HOLE	451	3
	489	2

ES SPACED AS 12 ES SPACED AS 12

2-BRG /	APAPTOR
SAE	Ø"E"
5	359
4	406
3	455
2	493

STAMFORD

Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 · Fax: 00 44 (0)1780 484100

Specification sheet

VTA28-G5

Description

The VTA28-Series benefits from years of technical development and improvement to bring customers an innovative and future proof diesel engine that keeps pace with ever changing generator set requirements.

Recognised globally for its performance under even the most severe climatic conditions, the VTA28-Series is widely acknowledged as the most robust and cost-effective diesel engine in its power range for the generator set market.

Features

Coolpac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Aftercooled – Two large capacity aftercoolers result in cooler, denser intake air for more efficient combustion and reduced internal stresses for longer life.

Cylinder Block – Alloy cast iron with removable wet liners. Cross bolt support to main bearing cap provides extra strength and stability.

Fuel System – Cummins PT[™] self-adjusting system. Integral dual flyweight governor provides overspeed protection independent of main governor.

Turbocharger – Two Cummins Turbo Technologies (CTT) turbochargers mounted at top of engine. Turbocharging provides more power, improved fuel economy, altitude compensation and lower smoke.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

Codes and standards

CE This com

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

1500 rpm (50 Hz Ratings)

Gros	Gross Engine Output Net Engine Output			ine Output Typical Generator Set Output							
Standby	Prime	Base	Standby	Prime	Base	Standby (ESP)		2 Drime		Base	(COP)
	kWm/BHP kWm/BHP			kWe	kVA	kWe	kVA	kWe	kVA		
612/820	560/750	492/660	584/783	538/721	470/630	560	700	509	636	445	556

1800 rpm (60 Hz Ratings)

Gros	s Engine O	utput	Net Engine Output			Output Typical Generator Set Output						
Standby	Prime	Base	Standby	Prime	Base	Standby (ESP)				(PRP)	(PRP) Base (CO	
	kWm/BHP kWm/BHP				kWe	kVA	kWe	kVA	kWe	kVA		
671/900	608/815	504/675	630/845	574/770	470/630	600	750	545	681	442	552	

General Engine Data

Туре	4 cycle, in line, Turbocharged and after-cooled
Bore, mm	139.7
Stroke, mm	152.4
Displacement, Litre	28
Cylinder Block	Cast iron, 40°V 12 cylinder
Battery Charging Alternator	55A
Starting Voltage	24V
Fuel System	Direct injection
Fuel Filter	Spin on fuel filters with water separator
Lube Oil Filter Type(s)	Spin on full flow filter
Lube Oil Capacity (I)	83
Flywheel Dimensions	SAE 0

Coolpac Performance Data

Cooling System Design	Jacket Water After Cooled
Coolant Ratio	50% ethylene glycol; 50% water
Coolant Capacity (I)	126
Limiting Ambient Temp.(°C)**	50.0 (50Hz)
Fan Power (kWm)	19.6 (50Hz)
Cooling system air flow (m ³ /s)**	12.5 (50Hz)
Air Cleaner Type	Dry replaceable element with restriction indicator

** @13 mm H₂O

Weight and Dimensions

Length	Width	Height	Weight (dry)	
mm	mm mm		kg	
2371	1457	2092	3215	

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph					
Standby Power									
100	612	820	154	40.8					
Prime Power									
100	560	750	140	37					
75	420	563	104	27.5					
50	280	375	73	19.3					
25	140	188	43	11.3					
Continuous Power									
100	492	660	122	32.1					

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

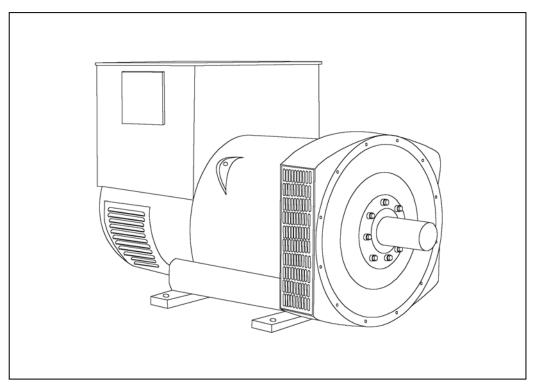
Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Fuel Consumption 1800 (60 Hz)

%	kWm	BHP	L/ph	US gal/ph					
Standby Power									
100	671	900	173	45.7					
Prime Power									
100	608	815	154	40.7					
75	456	611	118	31.2					
50	304	408	84	22.2					
25	152	204	50	13.1					
Continuous	Continuous Power								
100	504	675	128	33.9					

Cummins G-Drive Engines


Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399 Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902 Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729 Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811 North America 1400 73rd Avenue N.E.

Minneapolis, MN 55432 USA Phone 1 763 574 5000 Toll-free 1 877 769 7669 Fax 1 763 574 5298

HCI 534F/544F - Technical Data Sheet

HCI534F/544F SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

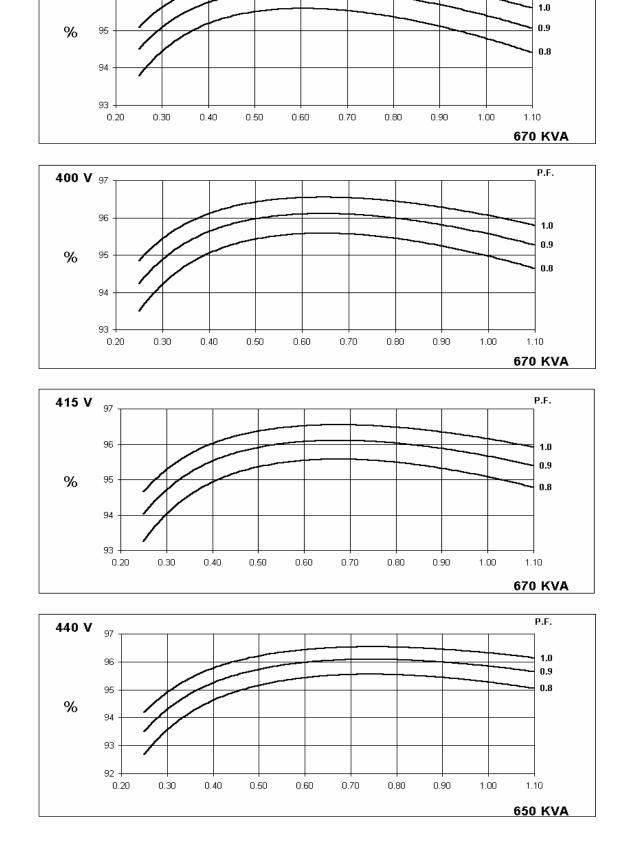
All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

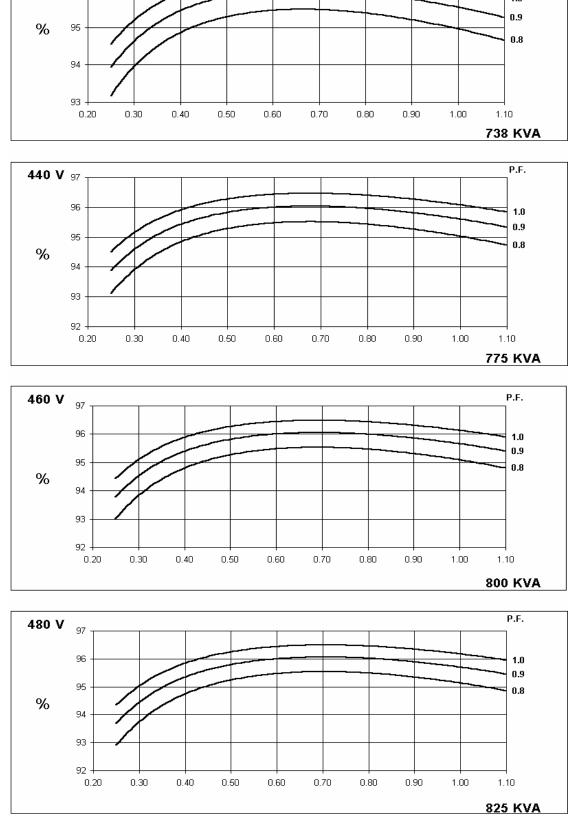

Front cover drawing typical of product range.

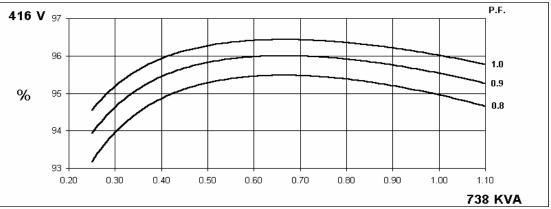
HCI534F/544F

WINDING 311

CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.					
A.V.R.	MX321	MX341						
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING			
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIRC	CUIT DECRE	MENT CUR	VES (page 7))		
CONTROL SYSTEM	SELF EXCI	ΓED						
A.V.R.	AS440							
VOLTAGE REGULATION	± 1.0 %	With 4% EN	GINE GOVE	RNING				
SUSTAINED SHORT CIRCUIT	SERIES 4 C	ONTROL DO	DES NOT SU	STAIN A SH	ORT CIRCU	IT CURRENT	-	
INSULATION SYSTEM				CLAS	SS H			
PROTECTION				IP	23			
RATED POWER FACTOR				0.	8			
STATOR WINDING				DOUBLE L	AYER LAP			
WINDING PITCH				TWO T				
WINDING LEADS				11				
		0 0007 (
STATOR WDG. RESISTANCE		0.0037 (STAR CONN	ECTED	
ROTOR WDG. RESISTANCE				2.16 Ohm				
EXCITER STATOR RESISTANCE				17 Ohms				
EXCITER ROTOR RESISTANCE			0.092	2 Ohms PER	PHASE AT 2	22°C		
R.F.I. SUPPRESSION	BS EN	61000-6-2 &	BS EN 6100	0-6-4,VDE 0	875G, VDE (0875N. refer 1	to factory for	others
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTING	G BALANCEI	D LINEAR LC	DAD < 5.0%	
MAXIMUM OVERSPEED	2250 Rev/Min							
BEARING DRIVE END				BALL. 62	20 (ISO)			
BEARING NON-DRIVE END				BALL. 63	14 (ISO)			
	1 BEARING 2 BEARING							
WEIGHT COMP. GENERATOR		168	5 kg			1694	4 kg	
WEIGHT WOUND STATOR			5 kg			805	kg	
WEIGHT WOUND ROTOR			1 kg		655 kg			
WR ² INERTIA			3 kgm ²			9.7551	-	
SHIPPING WEIGHTS in a crate			5 kg x 124(cm)			178 166 x 87 x	0	
PACKING CRATE SIZE			Hz			60	. ,	
TELEPHONE INTERFERENCE			<2%			TIF		
COOLING AIR			ec 2202 cfm			1.312 m³/se		
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138
kVA BASE RATING FOR REACTANCE VALUES	670	670	670	650	738	775	800	825
Xd DIR. AXIS SYNCHRONOUS	2.90	2.62	2.43	2.10	3.33	3.13	2.95	2.80
X'd DIR. AXIS TRANSIENT	0.16	0.14	0.13	0.11	0.16	0.15	0.14	0.13
X"d DIR. AXIS SUBTRANSIENT	0.11	0.10	0.09	0.08	0.11	0.10	0.10	0.09
Xq QUAD. AXIS REACTANCE	2.42	2.19	2.03	1.75	2.66	2.50	2.36	2.23
X"q QUAD. AXIS SUBTRANSIENT	0.25	0.23	0.21	0.18	0.31	0.29	0.27	0.26
X∟LEAKAGE REACTANCE	0.05	0.04	0.04	0.03	0.05	0.05	0.04	0.04
X2 NEGATIVE SEQUENCE	0.18	0.16	0.15	0.13	0.21	0.20	0.19	0.18
X0ZERO SEQUENCE	0.08	0.08	0.07	0.06	0.09	0.08	0.08	0.08
REACTANCES ARE SATURA	TED	VA	ALUES ARE			ND VOLTAG	E INDICATE	D
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.				0.0				
T'do O.C. FIELD TIME CONST.				2.5				
Ta ARMATURE TIME CONST.				0.0				
BHORT CIRCUIT RATIO 1/Xd								

HCI534F/544F


Winding 311


380 V 97

96

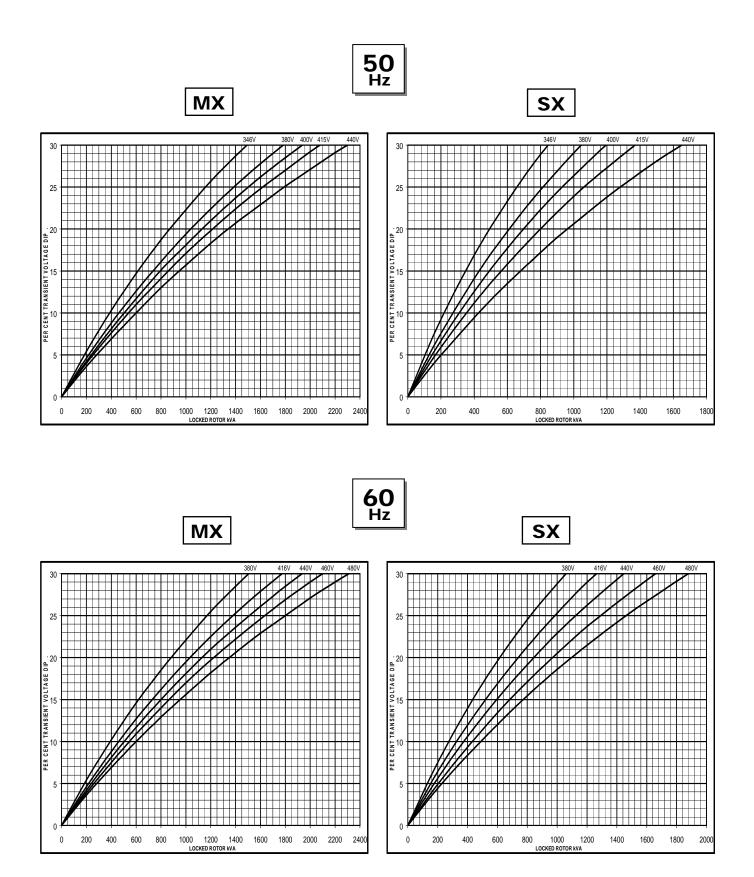
STAMFORD

P.F.

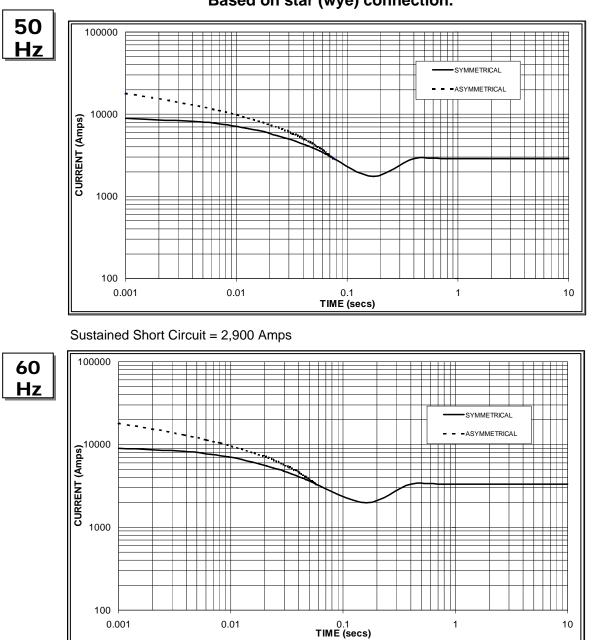
Winding 311

THREE PHASE EFFICIENCY CURVES

STAMFORD


60 Hz

HCI534F/544F



Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 3,300 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	X 1.00			
400v	X 1.06	440v	X 1.06			
415v	X 1.09	460v	X 1.12			
440v	X 1.12	480v	X 1.20			
The sustains	d current val	uo is constan	t irrocpoctivo			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

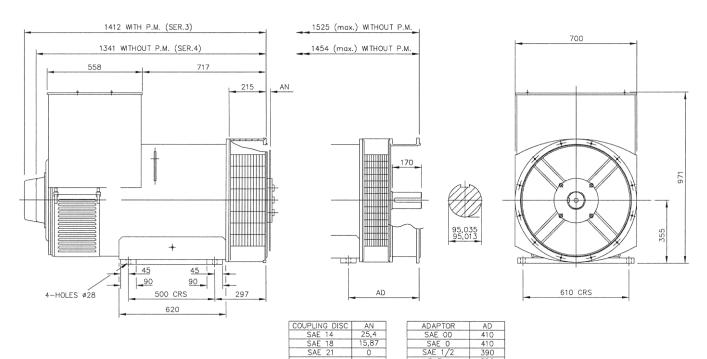
All other times are unchanged

Note 3 Curves are drawn for Star (Wye) connected machines. For other connections the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

HCI534F/544F



Winding 311 0.8 Power Factor

ΓΙΝ	GS
	ΓΙΝ

	Class - Temp Rise	Co	ont. F -	105/409	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	″°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	620	620	620	600	670	670	670	650	710	710	710	690	738	738	738	715
	kW	496	496	496	480	536	536	536	520	568	568	568	552	590	590	590	572
	Efficiency (%)	95.0	95.2	95.3	95.4	94.8	95.0	95.1	95.3	94.6	94.8	94.9	95.1	94.4	94.6	94.8	95.1
	kW Input	522	521	520	503	565	564	564	546	600	599	599	580	625	624	623	601
						-				-				-			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
1.12	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	688	719	731	750	738	775	800	825	781	819	848	875	806	844	878	906
	kW	550	575	585	600	590	620	640	660	625	655	678	700	645	675	702	725
	Efficiency (%)	95.1	95.2	95.3	95.3	95.0	95.0	95.1	95.1	94.8	94.9	94.9	95.0	94.7	94.8	94.8	94.9
	kW Input	579	604	614	630	621	653	673	694	659	690	715	737	681	712	741	764

DIMENSIONS


STAMFORD Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

4BT3.3-G3

Emissions Compliance: Non-Certified or "Flex" program for EU Mobile applications. Formerly EU Stage2 @ 50Hz. Unregulated Emissions @ 60Hz.

> Specification sheet

Our energy working for you.™

Description

The B3.3 has all the strength and reliability the genset industry has come to expect from the B Series range but in a smaller, lighter and more economical package. The B3.3 features direct fuel injection, resulting in cleaner, quieter and more fuel efficient performance. With a highly compact 4 cylinder envelope and extremely low heatrejection, the engine offers a high degree of installation flexibility.

This engine has been built to comply with CE certification.

1<u>SO 9001</u>

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

Bosch-Zexel VE - Direct injection in-line pump for cleaner, more efficient fuel consumption.

Parent Bore Block - Deep, stiff crankcase and optimised rib arrangement to enhance strength and reduce noise.

12 volt electrics package as standard, with starter, alternator and fuel solenoid.

Minimal derate for high altitude or high ambient applications.

Shallow oil pan and single spin-on oil filter.

SAE '4' flywheel housing.

Coolpac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gross Engine Output Net Engine Output			Typical Generator Set Output								
Standby	Prime	Base	Standby	Prime	Base	Standby (ESP)		P) Prime (PRP)		Base (COP)	
	kWm/BHP kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA			
51/68	46/62	37/50	50/67	46/61	36/48	44	55	40	50	32	40

1800 rpm (60 Hz Ratings)

Gross Engine Output Net Engine Output			Typical Generator Set Output								
Standby	Prime	Base	Standby	Prime	Base	Standby	(ESP)	Prime (PRP)		Base (COP)	
	kWm/BHP kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA			
60/80	54/72	43/58	59/79	53/71	42/56	50	63	45	56	36	45

General Engine Data

Туре	4 cycle, in-line, turbocharged
Bore mm	95 mm (3.74 in.)
Stroke mm	115 mm (4.53 in.)
Displacement Litre	3.3 litre (199 in. ³)
Cylinder Block	Cast iron, 4 cylinder
Battery Charging Alternator	45 amps
Starting Voltage	12 volt, negative ground
Fuel System	Direct injection
Fuel Filter	Spin-on fuel filters with water separator
Lube Oil Filter Type(s)	Spin-on full flow filter
Lube Oil Capacity (I)	7.5
Flywheel Dimensions	4/11

Coolpac Performance Data

Cooling System Design	Jacket Water					
Coolant Ratio	50% ethylene glycol; 50% water					
Coolant Capacity (I)	9.1					
	50Hz (1500rpm)	60Hz (1800rpm)				
Limiting Ambient Temp (°C)**	40	50				
Fan Power (kWm)**	0.7	1.2				
Cooling System Air Flow (m ³ /s)**	1.18	1.6				
Air Cleaner Type	Dry replaceable element with restriction indicator					
** @ 40 mm 11 ² 0						

Height

mm

870

** @ 13 mm H²0

Length

mm

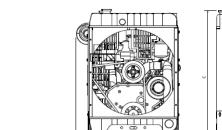
1069

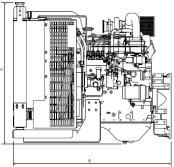
Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):


Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.


Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Fuel Consumption 1500 (50 Hz)

Coolpac Weight & Dimensions

Width

mm

625

%	kWm	BHP	US gal/ph						
Standby Power									
100	51	68	13	3.4					
Prime Power									
100	46	62	11	3.0					

Fuel Consumption 1800 (60 Hz)

%	kWm	BHP	US gal/ph					
Standby Power								
100	60	80	15	40				
Prime Power								
100	54	72	13	3.5				

Cummins G-Drive Engines

Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

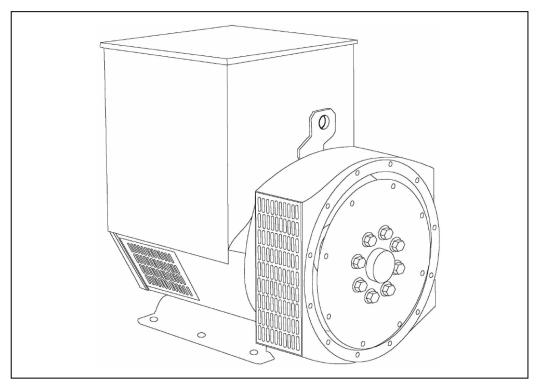
Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090

North America

1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

Weight (dry)


kg

299

UCI224D - Technical Data Sheet

UCI224D SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

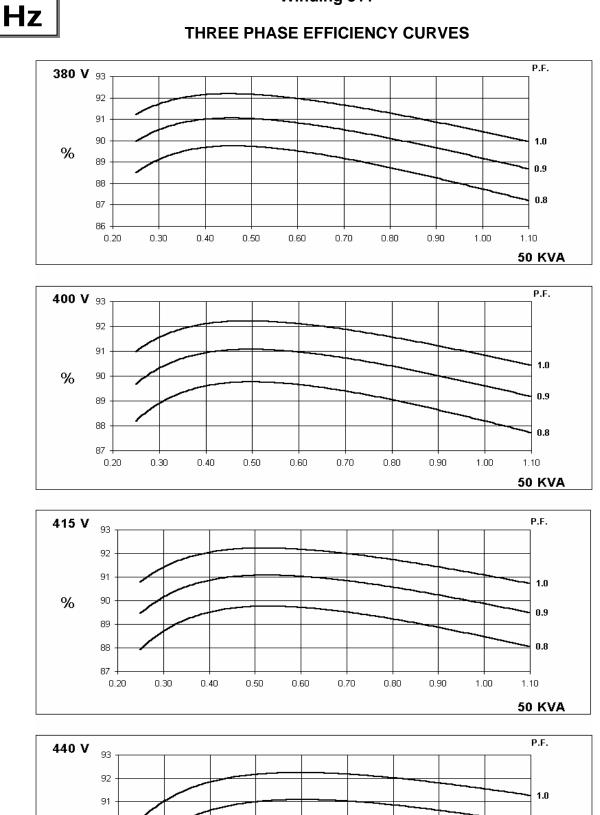
All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

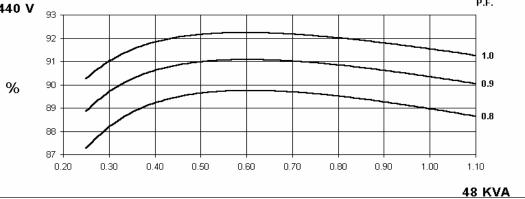
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

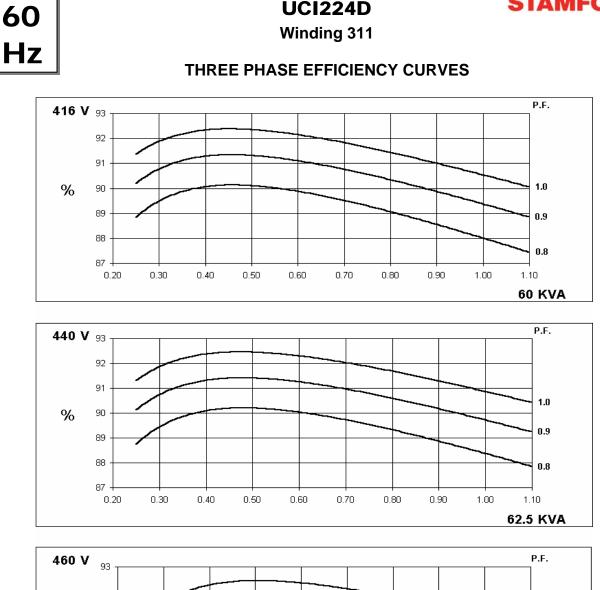
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.


Front cover drawing typical of product range.

UCI224D

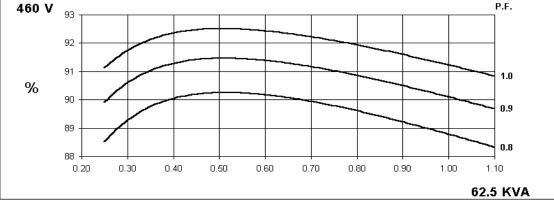
WINDING 311

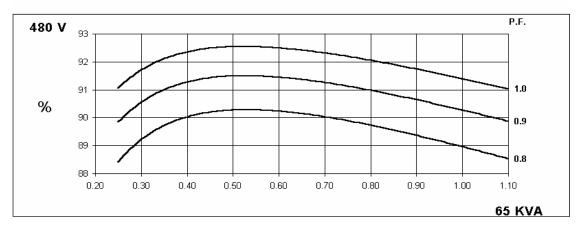

		WIN	IDING 31	1					
CONTROL SYSTEM	SEPARATE	LY EXCITED) BY P.M.G.						
A.V.R.	MX321	MX341							
VOLTAGE REGULATION	± 0.5 %								
SUSTAINED SHORT CIRCUIT					-				
		REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)							
CONTROL SYSTEM	SELF EXCIT	TED							
A.V.R.	SX460	AS440							
VOLTAGE REGULATION	± 1.0 %	± 1.0 %	With 4% EN	GINE GOVE	RNING				
SUSTAINED SHORT CIRCUIT	SERIES 4 C	ONTROL DO	DES NOT SU	STAIN A SH	ORT CIRCUI	T CURRENT	-		
INSULATION SYSTEM				CLAS	SS H				
PROTECTION				IP2	23				
RATED POWER FACTOR				0.	8				
STATOR WINDING			וסם						
			200	TWO T					
				1:	_				
STATOR WDG. RESISTANCE		0.129 C	hms PER PH	-		TAR CONNE	ECTED		
ROTOR WDG. RESISTANCE				0.64 Ohm					
EXCITER STATOR RESISTANCE				21 Ohms	at 22°C				
EXCITER ROTOR RESISTANCE			0.071	Ohms PER	PHASE AT 2	22°C			
R.F.I. SUPPRESSION	BS EN	61000-6-2 8	BS EN 6100	0-6-4,VDE 0	875G, VDE (875N. refer t	to factory for	others	
WAVEFORM DISTORTION		NO LOAD <	:1.5% NON-	DISTORTING	BALANCE	D LINEAR LC	DAD < 5.0%		
MAXIMUM OVERSPEED				2250 R	ev/Min				
BEARING DRIVE END				BALL. 6312-	2RS (ISO)				
BEARING NON-DRIVE END				BALL. 6309-	2RS (ISO)				
		1 BE/	ARING		· · · ·	2 BEA	RING		
WEIGHT COMP. GENERATOR			5 kg			290			
WEIGHT WOUND STATOR		86	3 kg			86	kg		
WEIGHT WOUND ROTOR		86.2	28 kg			77.9) kg		
WR ² INERTIA		0.421	6 kgm ²			0.4198	8 kgm ²		
SHIPPING WEIGHTS in a crate		30	7 kg			311	kg		
PACKING CRATE SIZE		97 x 57	x 96(cm)			97 x 57 >	k 96(cm)		
			Hz			60			
			<2%			TIF			
	000/000		ec 458 cfm	440/054	44.0/04.0	0.281 m ³ /se	-	400/077	
VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277	
VOLTAGE PARALLEL STAR	190/110 220/110	200/115 230/115	208/120 240/120	220/127 254/127	208/120 240/120	220/127 254/127	230/133 266/133	240/138 277/138	
kVA BASE RATING FOR REACTANCE									
VALUES	50	50	50	48	60	62.5	62.5	65	
Xd DIR. AXIS SYNCHRONOUS	2.33	2.10	1.95	1.67	3.04	2.83	2.59	2.47	
X'd DIR. AXIS TRANSIENT	0.18	0.16	0.15	0.13	0.22	0.20	0.19	0.18	
X"d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	0.09	0.15	0.14	0.13	0.12	
Xq QUAD. AXIS REACTANCE	1.07	0.97	0.90	0.77	1.40	1.30	1.19	1.14	
X"q QUAD. AXIS SUBTRANSIENT	0.14	0.13	0.12	0.10	0.14	0.13	0.12	0.11	
XL LEAKAGE REACTANCE	0.07	0.06	0.06	0.05	0.09	0.08	0.08	0.07	
X2 NEGATIVE SEQUENCE	0.13	0.12	0.11	0.09	0.14	0.13	0.12	0.11	
X0ZERO SEQUENCE	0.08	0.08						0.07	
REACTANCES ARE SATURAT T'd TRANSIENT TIME CONST.		V	ALUES ARE	PER UNIT A 0.02		ND VULTAG		ט	
T''d SUB-TRANSTIME CONST.				0.02					
T'do O.C. FIELD TIME CONST.				0.7					
Ta ARMATURE TIME CONST.				0.00	55 s				
		0.0055 s 1/Xd							



UCI224D Winding 311

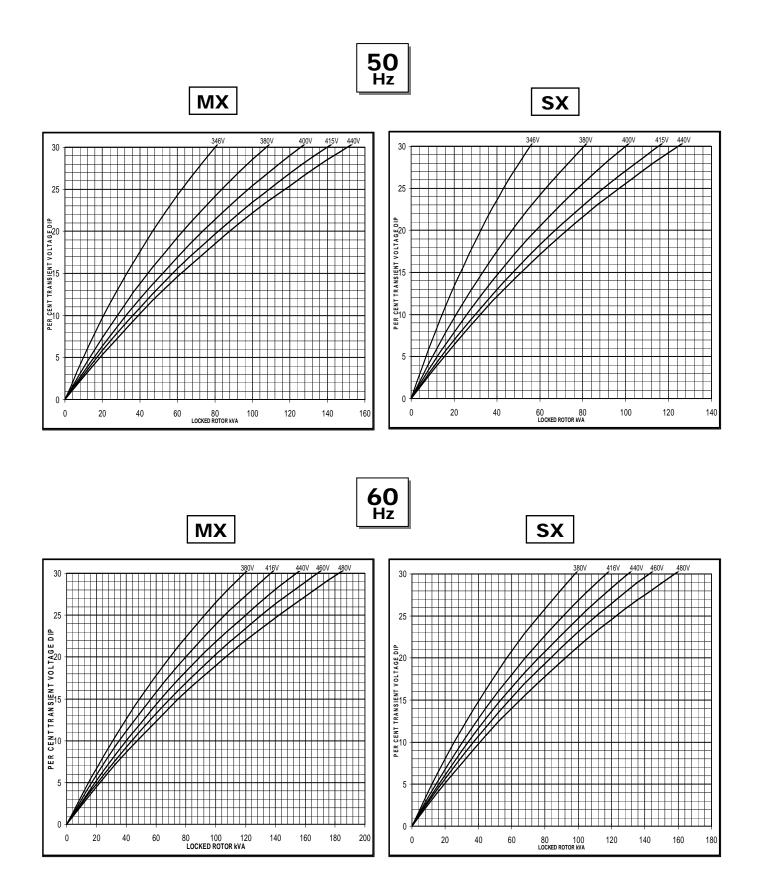
50

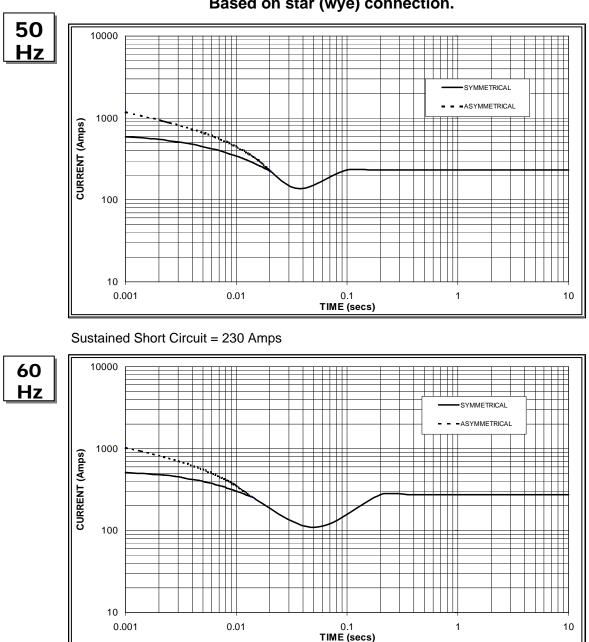

STAMFORD



UCI224D

STAMFORD




5

UCI224D

Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 275 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	X 1.00			
400v	X 1.07	440v	X 1.06			
415v	X 1.12	460v	X 1.12			
440v	X 1.18	480v	X 1.17			
The sustaine	d current val	ue is constar	t irrespective			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

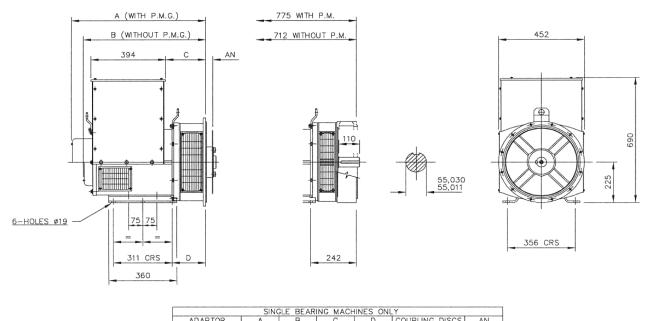
All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

UCI224D



Winding 311 / 0.8 Power Factor

RATI	NGS
------	-----

	Class - Temp Rise	Co	ont. F -	105/40°	°C	Co	ont. H -	125/40	°C	St	andby -	150/40)°C	St	andby -	163/27	′°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	45.0	45.0	45.0	33.6	50.0	50.0	50.0	37.5	53.0	53.0	53.0	39.1	55.0	55.0	55.0	41.2
	kW	36.0	36.0	36.0	26.9	40.0	40.0	40.0	30.0	42.4	42.4	42.4	31.3	44.0	44.0	44.0	33.0
	Efficiency (%)	88.3	88.6	88.9	89.3	87.7	88.2	88.5	89.0	87.4	87.9	88.2	88.8	87.2	87.7	88.0	88.6
	kW Input	40.8	40.6	40.5	38.5	45.6	45.4	45.2	43.1	48.5	48.2	48.1	45.0	50.5	50.2	50.0	47.6
										-				-			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	52.5	55.0	56.0	58.0	60.0	62.5	62.5	65.0	62.5	65.0	65.0	68.8	65.0	66.3	66.3	71.3
	kW	42.0	44.0	44.8	46.4	48.0	50.0	50.0	52.0	50.0	52.0	52.0	55.0	52.0	53.0	53.0	57.0
	Efficiency (%)	88.7	89.0	89.2	89.4	88.0	88.4	88.8	89.0	87.8	88.2	88.6	88.7	87.5	88.1	88.5	88.5
	kW Input	47.4	49.4	50.2	51.9	54.5	56.6	56.3	58.4	56.9	59.0	58.7	62.1	59.4	60.2	59.9	64.5

DIMENSIONS

SINGLE BEARING MACHINES ONLY								
ADAPTOR	A	В	С	D	COUPLING DISCS	AN		
SAE 1	724,3	661,3	224,3	191,3	SAE 8	61,90		
SAE 2	710	647	210	177	SAE 10	53,98		
SAE 3	710	647	210	177	SAE 11,5	39,68		
SAE 4	710	647	210	177	SAE 14	25,40		

STAMFORD Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

S3.8 G7 CoolPac

> Specification sheet

Our energy working for you.™

Description

The Cummins 'S Series' engine powered CoolPac sets offer the lowest cost of maintenance thereby proving to be the most economical power solution. With the robust design and integrated technologies, the 'S Series' CoolPac can command an unrivalled reputation for reliability and performance.

The Cummins 'S Series' engine powered CoolPac sets give you the advantage of optimising your valuable space. All elements of the CoolPac sets are designed from the start to work together to maximize efficiency, even at part loads, thus offering you the advantage of lowest operating costs.

The rugged and reliable Cummins 'S Series' CoolPac sets are unique, because all the major components – the engine and cooling system are manufactured by Cummins India. This integral approach means each element of a CoolPac set is designed to work in harmony from the start.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

Engine : Cummins 'S Series ' CoolPac, powered by Cummins 'S Series' engines, are rated at 1500 RPM and conform to ISO 8528 specifications. The engines are radiator cooled, four stroke and multi-cylinder, conforming to BS 55514/ISO 3046.

The scope of Supply includes :

- Battery Charging Alternator
- Bosch In-line fuel system with mechanical governor
- Dual spin-on fuel filters
- Lube oil filter
- Turbocharger
- Charge Air Cooler (CAC)
- Dry type Air Cleaner
- Coolant recovery bottle
- Fuel pump shut-off coil with Temperature, Pressure & Magnetic Speed sensors
- Flywheel and flywheel housing
- CÉ compliant guarding
- Oil drain valve

Integrated Design - CoolPac products are supplied fitted with cooling package and medium duty air cleaner for a complete power package. Each component has been has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gros	Gross Engine Output Net Engine Output			Typical Generator Set Output							
Standby	Prime	Base	Standby	Prime	Base	Standby (ESP)		(ESP) Prime (PRP)		Base (COP)	
	kWm/BHP kWm/BHP			kWe	kVA	kWe	kVA	kWe	kVA		
64.9/87	59.6/79.9	41.7/55.9	62.9/84.2	57.6/77.1	39.7/53.1	52.8	66	48	60	33.6	42

General Engine Data

Туре	In line, Radiator cooled
Bore mm	97
Stroke mm	128
Displacement Litre	3.8
Cylinder Block	Cast Iron, 4 Cylinder
Battery Charging Alternator	12V, 35 Amps
Starting Voltage	12V
Fuel System	Direct Injection
Fuel Filter	Spin on
Lube Oil Filter Type(s)	Spin on
Lube Oil Capacity (I)	11
Flywheel Dimensions	SAE3/10

CoolPac Performance Data

Cooling System Design	Charge Air & Jacket Water Cooled
Coolant Ratio	50:50
Coolant Capacity (I)	11
Limiting Ambient Temp. (degC)**	50
Fan Power (Kw)	2
Cooling System Air Flow (m ³ /s)**	0.99
Air Cleaner Type	Dry Type, Replaceable, medium duty
** @ ¼" H ² 0	

@ ¼" H'0

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

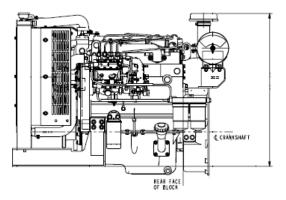
Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):


Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Weight & Dimensions

Length	Width	Height	Weight (dry)	
mm	mm	mm	kg	
1290	910	1080	500	

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph					
Standby Power									
100	64.9	87	16.1	4.3					
Prime Power									
100	59.6	79.9	14.7	3.9					
75	44.7	59.9	11.0	2.9					
50	29.8	40	6.1	1.6					
25	14.9	20	4.5	1.2					
Continuous Power									
100	41.7	55.9	10.6	2.8					

Cummins G-Drive Engines

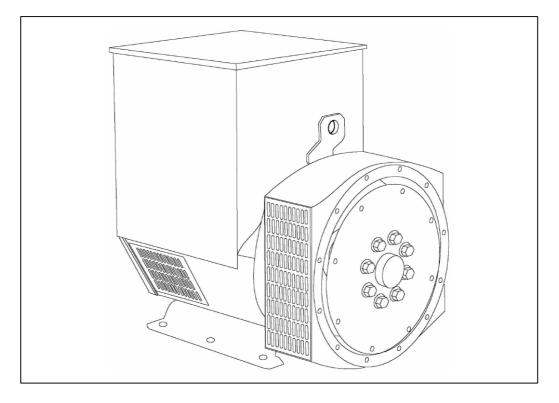
Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Mexico

Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811


North America

1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

UCI224E - Technical Data Sheet

UCI224E SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

SX440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The SX440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

If 3-phase sensing is required with the self-excited system, the SX421 AVR must be used.

SX421AVR

This AVR also operates in a self-excited system. It combines all the features of the SX440 with, additionally, three-phase rms sensing for improved regulation and performance. Over voltage protection is provided via a separate circuit breaker. An engine relief load acceptance feature is built in as standard.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

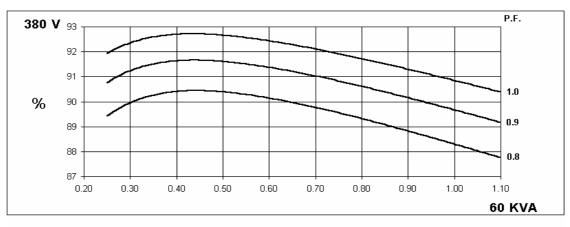
Front cover drawing typical of product range.

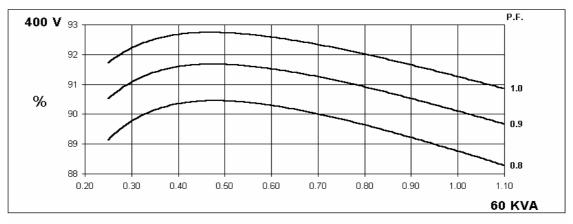
STAMFORD

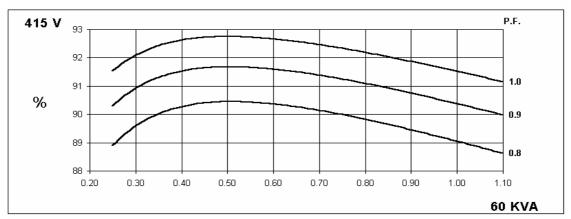
UCI224E

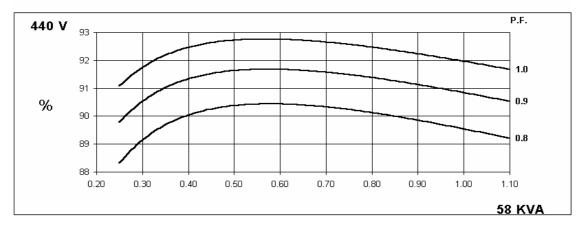
WINDING 311

-	-	BY P.M.G.						
MX321	MX341							
± 0.5 %	± 1.0 %	With 4% EN	GINE GOVEF	RNING				
REFER TO S	SHORT CIRC	UIT DECREI	MENT CURVE	ES (page 7)				
SELF EXCIT	ED							
SX460	SX440	SX421						
± 1.5 %	± 1.0 %	± 0.5 %	With 4% EN	GINE GOVER	RNING			
SERIES 4 C	ONTROL DO	ES NOT SUS	STAIN A SHO	RT CIRCUIT	CURRENT			
			CLAS	SS H				
			IP2	23				
		DO	-					
				-				
	0.101 (Ohms PER P	HASE AT 22°	C SERIES S	TAR CONNE	CTED		
			0.69 Ohms	s at 22°C				
			20 Ohms	at 22°C				
		0.07	'8 Ohms PER	PHASE AT 2	2°C			
BS EI	N 61000-6-2 a	& BS EN 610	00-6-4,VDE 0	875G, VDE 0	875N. refer to	factory for o	thers	
	NO LOAD ·	< 1.5% NON	-DISTORTING	BALANCED	LINEAR LO	AD < 5.0%		
				. ,				
	1 BE/		BALL. 0309-	2K3 (130)	2 BEA	RING		
		0				•		
		0				0		
		-				-		
	334	4 kg				-		
	105 x 57	x 96(cm)			105 x 57 :	x 96(cm)		
	50	Hz			60	Hz		
	THF	<2%			TIF<	<50		
	0.216 m³/s	ec 458 cfm	1	0.281 m³/sec 595 cfm				
380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277	
190/110			220/127	208/120			240/138	
220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138	
60	60	60	58	67.5	70	72.5	75	
2.48	2.24	2.08	1.79	3.00	2.78	2.64	2.50	
0.19	0.17	0.16	0.14	0.22	0.20	0.19	0.18	
0.13	0.12	0.11	0.09	0.15	0.14	0.13	0.13	
1.13	1.02	0.95	0.82	1.38	1.28	1.21	1.15	
	0.13	0.12	0.10	0.14	0.13	0.12	0.12	
0.14	0.10	0.08 0.08 0.07 0.06 0.09 0.08 0.08						
		0.07	0.06	0.09	0.06	0.00		
		0.07 0.11	0.06	0.09 0.14	0.08	0.00	0.12	
0.08 0.13 0.11	0.08 0.12 0.10	0.11 0.09	0.09	0.14 0.09	0.13 0.08	0.12 0.08	0.08	
0.08 0.13	0.08 0.12 0.10	0.11 0.09	0.09 0.08 E PER UNIT A	0.14 0.09 T RATING AI	0.13 0.08	0.12 0.08	0.08	
0.08 0.13 0.11	0.08 0.12 0.10	0.11 0.09	0.09 0.08 PER UNIT A 0.02	0.14 0.09 T RATING AI 8 s	0.13 0.08	0.12 0.08	0.08	
0.08 0.13 0.11	0.08 0.12 0.10	0.11 0.09	0.09 0.08 PER UNIT A 0.02 0.00	0.14 0.09 T RATING At 8 s 7 s	0.13 0.08	0.12 0.08	0.08	
0.08 0.13 0.11	0.08 0.12 0.10	0.11 0.09	0.09 0.08 PER UNIT A 0.02	0.14 0.09 T RATING AI 8 s 7 s 's	0.13 0.08	0.12 0.08	0.08	
	MX321 ± 0.5 % REFER TO S SELF EXCIT SX460 ± 1.5 % SERIES 4 C SERIES 4 C SERIE	MX321 MX341 ± 0.5 % ± 1.0 % REFER TO SHORT CIRC SELF EXCITE SX460 SX440 ± 1.5 % ± 1.0 % SERIES 4 CONTROL DO SERIES 4 CONTROL DO BS EN 61000-6-2 % NO LOAD BS EN 61000-6-2 % NO LOAD STATE SSA SERIES 3 SERIES 4 O.101 0 O.101 0 SERIES 3 SERIES 4 O.101 0 SERIES 4 O.101 0 SERIES 4 O.101 0 SERIES 4 SERI<	$\pm 0.5 \%$ $\pm 1.0 \%$ With 4% EN REFER TO SHORT CIRCUIT DECREI SELF EXCITED SX460 SX421 $\pm 1.5 \%$ $\pm 1.0 \%$ $\pm 0.5 \%$ SERIES 4 CONTROL DOES NOT SUS DO SERIES 4 CONTROL DOES NOT SUS O.101 Ohms PER P O.101 IS O.101 IS O.103 kg O.103 kg O.14999 kgm ² O.216 m ³ /sec 458 cfm 380/220 O.216 m ³ /sec 458 cfm 380/220 O.11 O.11 S0 HZ <td>MX321 MX341 $\pm 0.5 \%$ $\pm 1.0 \%$ With 4% ENGINE GOVER REFER TO SHORT CIRCUIT DECREMENT CURVE SELF EXCITED SX460 SX440 SX421 $\pm 1.5 \%$ $\pm 1.0 \%$ $\pm 0.5 \%$ With 4% ENGINE GOVER SERIES 4 CONTROL DOES NOT SUSTAIN A SHO SERIES 4 CONTROL DOES NOT SUSTAIN A SHO DOUBLE LAYER IP2 </td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>MX321 MX341 ± 0.5 % ± 1.0 % With 4% ENGINE GOVERNING REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7) SELF EXCITED SX460 SX440 ± 1.5 % ± 1.0 % ± 0.5 % With 4% ENGINE GOVERNING SERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT IP23 CLASS H IP23 0.8 DOUBLE LAYER CONCENTRIC TWO THIRDS 0.101 Ohms PER PHASE AT 22'C SERIES STAR CONNECTED 0.69 Ohms at 22''C 20 Ohms at 22''C O INO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%</td> EXENTION OF A STAR STAR STAR STAR STAR STAR STAR ST	MX321 MX341 $\pm 0.5 \%$ $\pm 1.0 \%$ With 4% ENGINE GOVER REFER TO SHORT CIRCUIT DECREMENT CURVE SELF EXCITED SX460 SX440 SX421 $\pm 1.5 \%$ $\pm 1.0 \%$ $\pm 0.5 \%$ With 4% ENGINE GOVER SERIES 4 CONTROL DOES NOT SUSTAIN A SHO SERIES 4 CONTROL DOES NOT SUSTAIN A SHO DOUBLE LAYER IP2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MX321 MX341 ± 0.5 % ± 1.0 % With 4% ENGINE GOVERNING REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7) SELF EXCITED SX460 SX440 ± 1.5 % ± 1.0 % ± 0.5 % With 4% ENGINE GOVERNING SERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT IP23 CLASS H IP23 0.8 DOUBLE LAYER CONCENTRIC TWO THIRDS 0.101 Ohms PER PHASE AT 22'C SERIES STAR CONNECTED 0.69 Ohms at 22''C 20 Ohms at 22''C O INO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%	

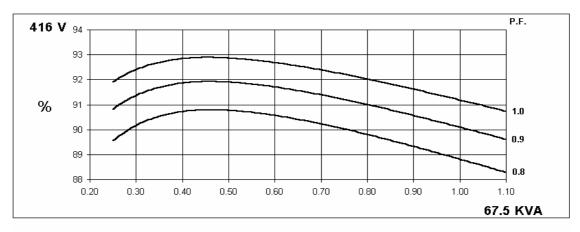


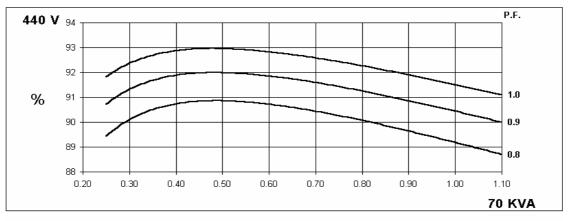

UCI224E

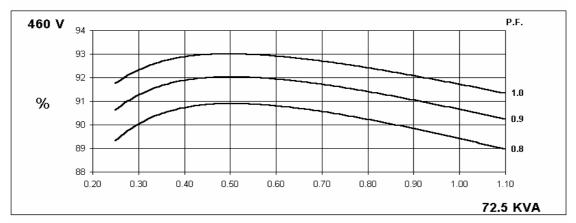


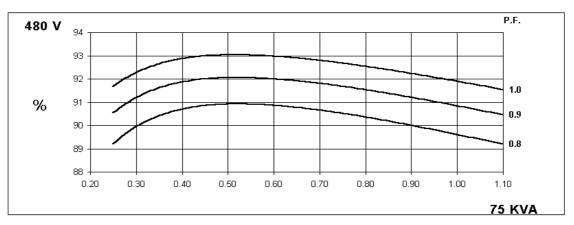


THREE PHASE EFFICIENCY CURVES

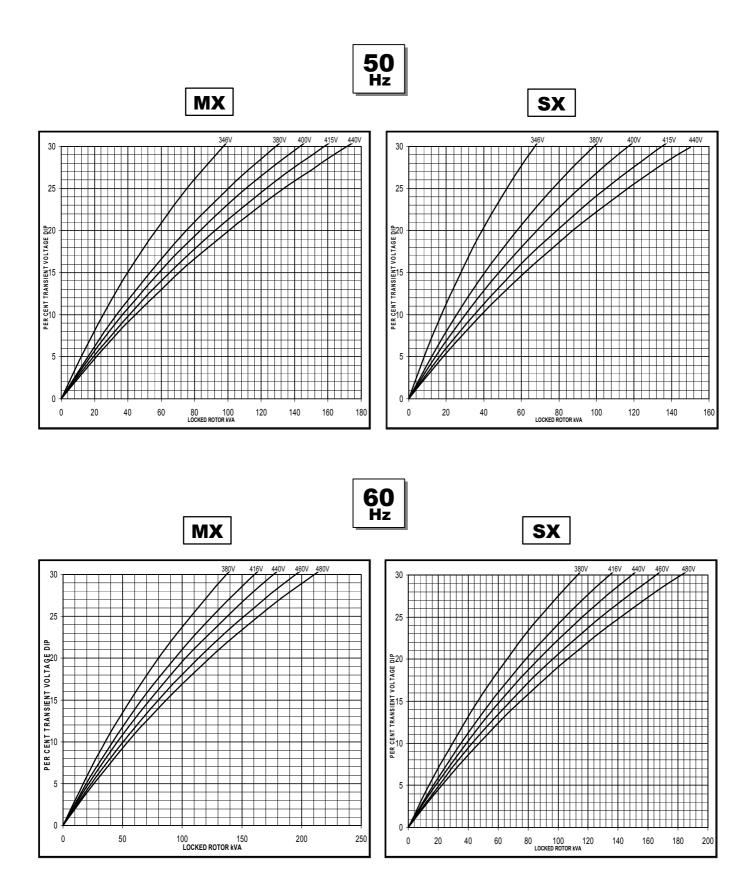




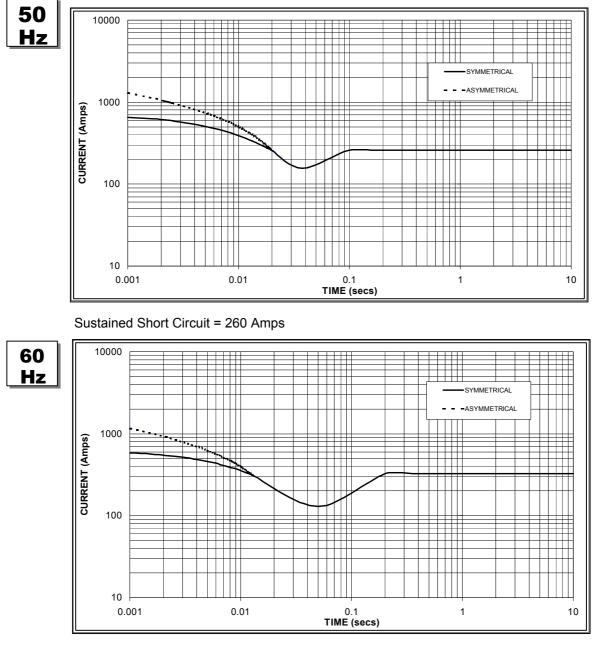

Winding 311



THREE PHASE EFFICIENCY CURVES



Winding 311


Locked Rotor Motor Starting Curve

UCI224E

STAMFORD power generation

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 325 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	50Hz		Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	X 1.00
400v	X 1.07	440v	X 1.06
415v	X 1.12	460v	X 1.12
440v	X 1.18	480v	X 1.17

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

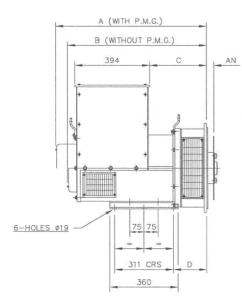
All other times are unchanged

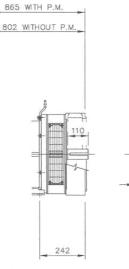
Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

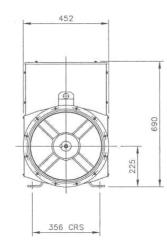
Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732


UCI224E


Winding 311 / 0.8 Power Factor

RATI	NGS
------	-----


(Class - Temp Rise	Co	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	′°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
Hz	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	53.0	53.0	53.0	40.3	60.0	60.0	60.0	45.0	61.0	61.0	61.0	45.8	63.0	63.0	63.0	47.3
	kW	42.4	42.4	42.4	32.2	48.0	48.0	48.0	36.0	48.8	48.8	48.8	36.6	50.4	50.4	50.4	37.8
	Efficiency (%)	88.9	89.3	89.5	89.9	88.3	88.8	89.1	89.5	88.2	88.7	89.0	89.5	88.0	88.5	88.8	89.4
	kW Input	47.7	47.5	47.4	46.3	54.4	54.1	53.9	51.8	55.3	55.0	54.8	52.7	57.3	56.9	56.8	54.6
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	62.5	65.0	65.0	68.0	67.5	70.0	72.5	75.0	70.0	73.8	73.8	78.8	72.5	75.0	75.0	80.0
	kW	50.0	52.0	52.0	54.4	54.0	56.0	58.0	60.0	56.0	59.0	59.0	63.0	58.0	60.0	60.0	64.0
	Efficiency (%)	89.2	89.5	89.9	90.0	88.8	89.2	89.4	89.6	88.6	88.9	89.3	89.4	88.4	88.8	89.3	89.3
	kW Input	56.1	58.1	57.8	60.4	60.8	62.8	64.9	67.0	63.2	66.4	66.1	70.5	65.6	67.6	67.2	71.7

DIMENSIONS

55,030 55,011

	SINC	GLE BEAR	ING MACH	HINES ON	LY	
ADAPTOR	A	В	C	D	COUPLING DISCS	AN
SAE 1	814,3	751,3	314,3	191,3	SAE 8	61,90
SAE 2	800	737	300	177	SAE 10	53,98
SAE 3	800	737	300	177	SAE 11,5	39,68
SAE 4	800	737	300	177	SAE 14	25,40

Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

S3.8 G6 CoolPac

> Specification sheet

Our energy working for you.™

Description

The Cummins 'S Series' engine powered CoolPac sets offer the lowest cost of maintenance thereby proving to be the most economical power solution. With the robust design and integrated technologies, the 'S Series' CoolPac can command an unrivalled reputation for reliability and performance.

The Cummins 'S Series' engine powered CoolPac sets give you the advantage of optimising your valuable space. All elements of the CoolPac sets are designed from the start to work together to maximize efficiency, even at part loads, thus offering you the advantage of lowest operating costs.

The rugged and reliable Cummins 'S Series' CoolPac sets are unique, because all the major components - the engine and cooling system are manufactured by Cummins India. This integral approach means each element of a CoolPac set is designed to work in harmony from the start.

Features

Engine : Cummins^R 'S Series ' CoolPac sets, powered by Cummins^R 'S Series ' engine, are rated at 1500 RPM and conform to ISO 8528 specifications. The engines are radiator cooled, four stroke and multi-cylinder, conforming to BS 55514/ISO 3046.

The scope of Supply includes :

- Battery Charging Alternator
- Bosch In-line fuel system with mechanical governor
- Dual spin-on fuel filter
- Lube oil filter
- Turbocharger
- Dry type Air Cleaner
- Coolant recovery bottle
- Fuel pump shut-off coil with safeties (LLOP, HWT)
- Flywheel and flywheel housing
- CE compliant guarding
- Oil drainage valve

Integrated Design - CoolPac products are supplied fitted with cooling package and medium duty air cleaner for a complete power package. Each component has been has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gros	s Engine Ou	jine Output Net Engine Output			Typical Generator Set Output						
Standby	Prime	Base	Standby Prime Base		Standby (ESP)		Prime (PRP)		Base (COP)		
	kWm/BHP			kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA
53.6/71.9	48.7/65.3	34.1/45.7	51.6/69.1 46.7/62.6 32.1/43		44	55	40	50	28	35	

ſF

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in

facilities certified to ISO9001 or ISO9002.

General Engine Data

Туре	In line, Radiator cooled
Bore mm	97
Stroke mm	128
Displacement Litre	3.8
Cylinder Block	Cast Iron, 4 Cylinder
Battery Charging Alternator	12V, 35 Amps
Starting Voltage	12V
Fuel System	Direct Injection
Fuel Filter	Spin on
Lube Oil Filter Type(s)	Spin on
Lube Oil Capacity (I)	11
Flywheel Dimensions	SAE3/10
1782	

CoolPac Performance Data

Cooling System Design	Jacket Water Cooled
Coolant Ratio	50:50
Coolant Capacity (I)	11
Limiting Ambient Temp. (degC)**	45
Fan Power (Kw)	2
Cooling System Air Flow (m ³ /s)**	0.99
Air Cleaner Type	Dry Type, Replaceable, medium duty
** @ ¼" H²0	

@ ¼" H²0

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
1135	740	980	450

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph						
Standby Power										
100	53.6	71.9	14.3	3.8						
Prime Powe	Prime Power									
100	48.7	65.3	12.8	3.4						
75	36.5	48.9	9.5	2.5						
50	24.3	32.6	6.5	1.7						
25	12.2	16.4	4.0	1.1						
Continuous	Continuous Power									
100	34.1	45.7	9.1	2.4						

Cummins G-Drive Engines

Asia Pacific

10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Mexico Rua Jati, 310, Cumbica

Latin America

Brazil

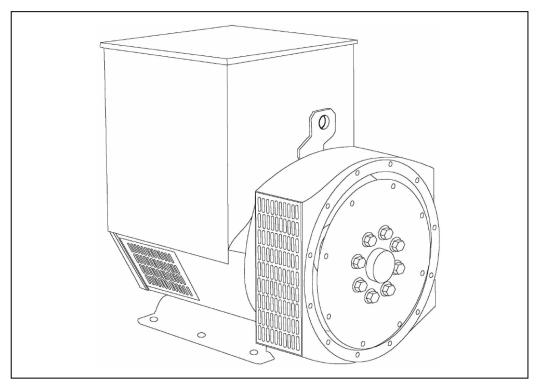
Guarulhos, SP 07180-900

Phone 55 11 2186 4552

Fax 55 11 2186 4729

Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

North America


1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000

USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

UCI224D - Technical Data Sheet

UCI224D SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

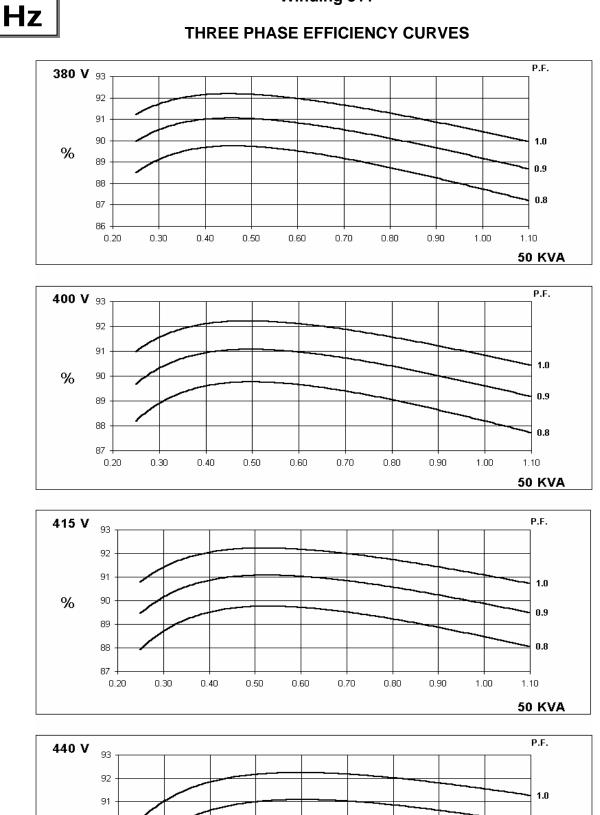
All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

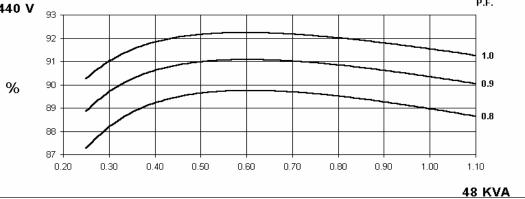
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

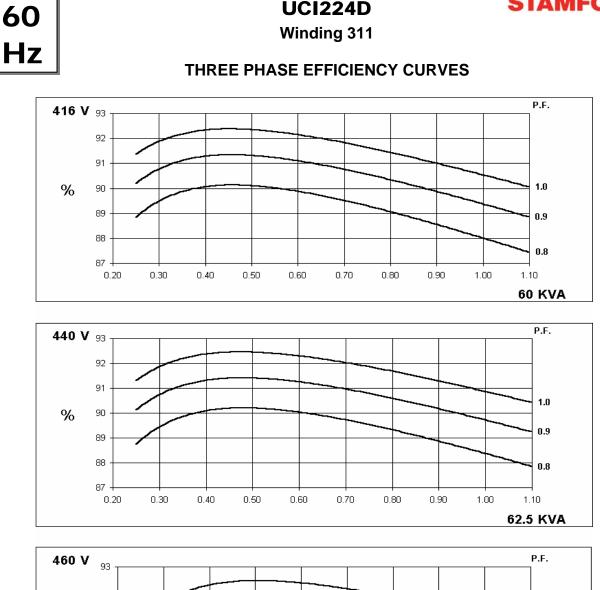
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.


Front cover drawing typical of product range.

UCI224D

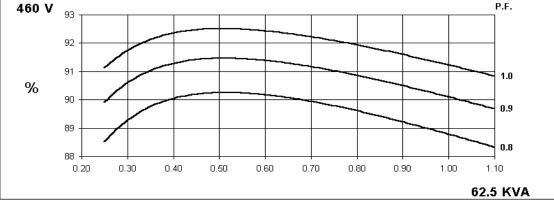
WINDING 311

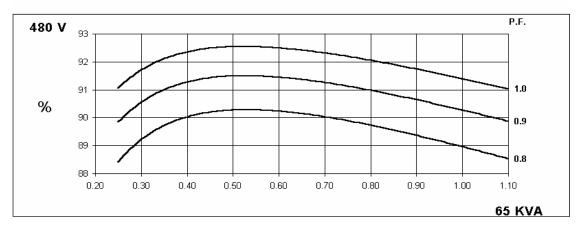

		WIN	IDING 31	1				
CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.					
A.V.R.	MX321	MX341						
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING			
SUSTAINED SHORT CIRCUIT			CUIT DECRE		-			
CONTROL SYSTEM	SELF EXCIT	ED						
A.V.R.	SX460	AS440						
VOLTAGE REGULATION	± 1.0 %	± 1.0 %	With 4% EN	GINE GOVE	RNING			
SUSTAINED SHORT CIRCUIT	SERIES 4 C	ONTROL DO	DES NOT SU	STAIN A SH	ORT CIRCUI	T CURRENT	-	
INSULATION SYSTEM				CLAS	SS H			
PROTECTION				IP2	23			
RATED POWER FACTOR				0.	8			
STATOR WINDING						RIC		
				TWO TI				
				12	_			
STATOR WDG. RESISTANCE		0.129 C	hms PER PH	-		TAR CONNE	ECTED	
ROTOR WDG. RESISTANCE				0.64 Ohms				
EXCITER STATOR RESISTANCE				21 Ohms	at 22°C			
EXCITER ROTOR RESISTANCE			0.071	Ohms PER	PHASE AT 2	22°C		
R.F.I. SUPPRESSION	BS EN	61000-6-2 &	BS EN 6100	0-6-4,VDE 0	875G, VDE 0	875N. refer t	to factory for	others
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTING	G BALANCE	D LINEAR LC	DAD < 5.0%	
MAXIMUM OVERSPEED				2250 R	ev/Min			
BEARING DRIVE END				BALL. 6312-	2RS (ISO)			
BEARING NON-DRIVE END				BALL. 6309-	2RS (ISO)			
		1 BE/	ARING		· · · ·	2 BEA	RING	
WEIGHT COMP. GENERATOR			5 kg			290		
WEIGHT WOUND STATOR		86	kg			86	kg	
WEIGHT WOUND ROTOR		86.2	28 kg			77.9) kg	
WR ² INERTIA		0.421	6 kgm ²			0.4198	8 kgm ²	
SHIPPING WEIGHTS in a crate		307	7 kg			311	kg	
PACKING CRATE SIZE		97 x 57	x 96(cm)			97 x 57 >	k 96(cm)	
			Hz			60		
			<2%			TIF		
	000/000		ec 458 cfm	110/051	110/010	0.281 m ³ /se	-	400/077
VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277
VOLTAGE PARALLEL STAR	190/110 220/110	200/115 230/115	208/120 240/120	220/127	208/120 240/120	220/127 254/127	230/133 266/133	240/138 277/138
kVA BASE RATING FOR REACTANCE								
VALUES	50	50	50	48	60	62.5	62.5	65
Xd DIR. AXIS SYNCHRONOUS	2.33	2.10	1.95	1.67	3.04	2.83	2.59	2.47
X'd DIR. AXIS TRANSIENT	0.18	0.16	0.15	0.13	0.22	0.20	0.19	0.18
X"d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	0.09	0.15	0.14	0.13	0.12
Xq QUAD. AXIS REACTANCE	1.07	0.97	0.90	0.77	1.40	1.30	1.19	1.14
X"q QUAD. AXIS SUBTRANSIENT	0.14	0.13	0.12	0.10	0.14	0.13	0.12	0.11
	0.07	0.06	0.06	0.05	0.09	0.08	0.08	0.07
X2 NEGATIVE SEQUENCE	0.13	0.12	0.11	0.09	0.14	0.13	0.12	0.11
X0 ZERO SEQUENCE REACTANCES ARE SATURAT	SEQUENCE 0.08 0.08 0.07 0.06 0.09 0.08 0.08 0.07							
					I RATING A	ND VOLTAG	E INDICATE	ט
		V	ALUES ARE					
T'd TRANSIENT TIME CONST.		V	ALUES ARE	0.02	.7 s			
		Vi	ALUES ARE		27 s 16 s			
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.		V	ALUES ARE	0.02	27 s 16 s 7 s			



UCI224D Winding 311

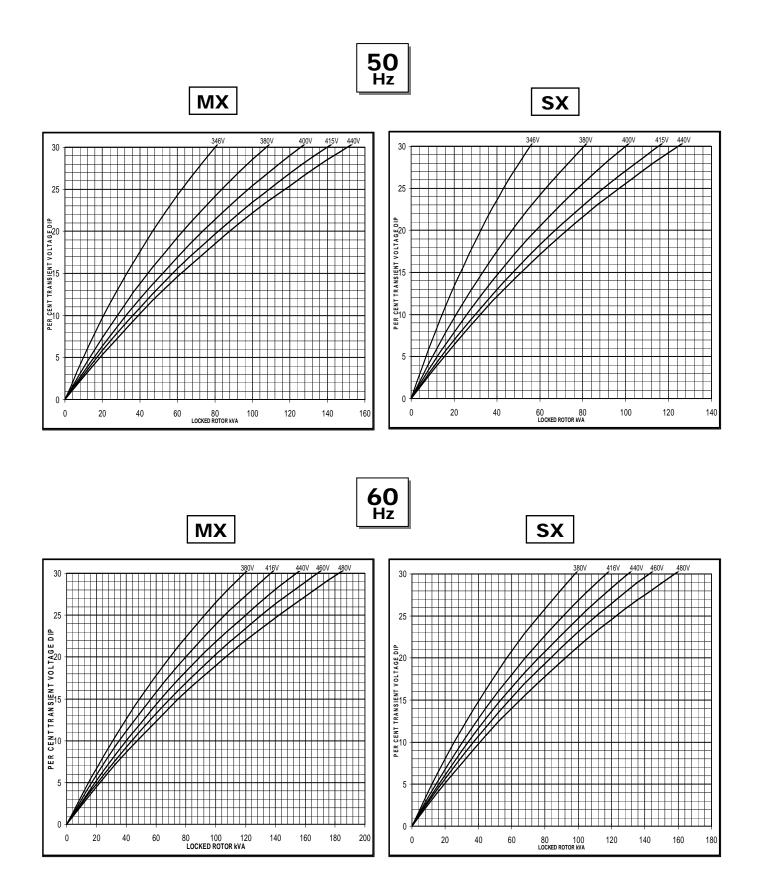
50

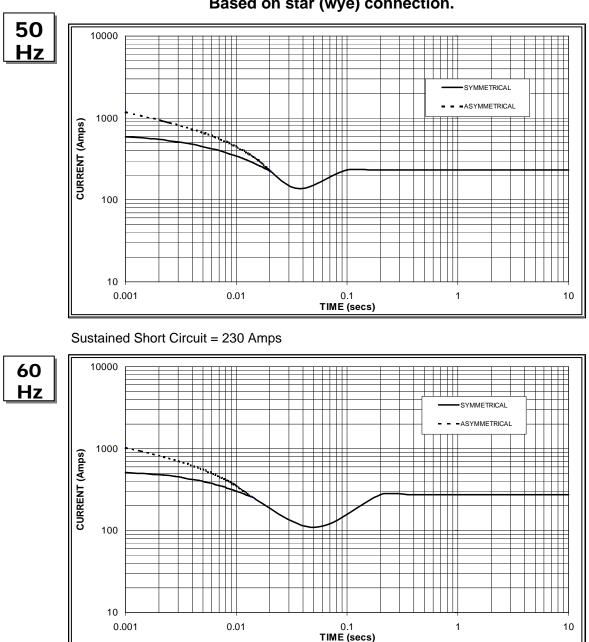

STAMFORD



UCI224D

STAMFORD




5

UCI224D

Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 275 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	X 1.00
400v	X 1.07	440v	X 1.06
415v	X 1.12	460v	X 1.12
440v	X 1.18	480v	X 1.17
The sustaine	d current val	ue is constar	t irrespective

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

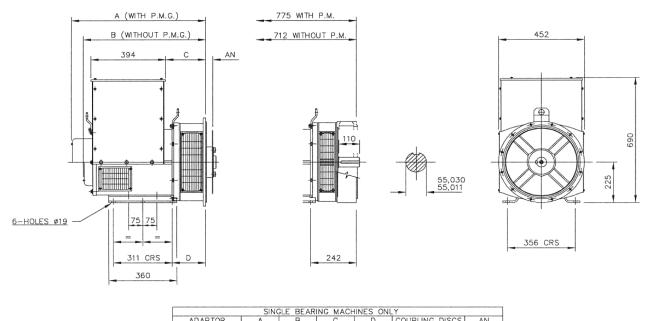
All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

UCI224D



Winding 311 / 0.8 Power Factor

RATI	NGS
------	-----

	NATING																
	Class - Temp Rise	Co	ont. F -	105/40°	°C	Co	ont. H -	125/40	°C	St	andby -	150/40)°C	St	andby -	163/27	′°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	45.0	45.0	45.0	33.6	50.0	50.0	50.0	37.5	53.0	53.0	53.0	39.1	55.0	55.0	55.0	41.2
	kW	36.0	36.0	36.0	26.9	40.0	40.0	40.0	30.0	42.4	42.4	42.4	31.3	44.0	44.0	44.0	33.0
	Efficiency (%)	88.3	88.6	88.9	89.3	87.7	88.2	88.5	89.0	87.4	87.9	88.2	88.8	87.2	87.7	88.0	88.6
	kW Input	40.8	40.6	40.5	38.5	45.6	45.4	45.2	43.1	48.5	48.2	48.1	45.0	50.5	50.2	50.0	47.6
										-				-			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	52.5	55.0	56.0	58.0	60.0	62.5	62.5	65.0	62.5	65.0	65.0	68.8	65.0	66.3	66.3	71.3
	kW	42.0	44.0	44.8	46.4	48.0	50.0	50.0	52.0	50.0	52.0	52.0	55.0	52.0	53.0	53.0	57.0
	Efficiency (%)	88.7	89.0	89.2	89.4	88.0	88.4	88.8	89.0	87.8	88.2	88.6	88.7	87.5	88.1	88.5	88.5
	kW Input	47.4	49.4	50.2	51.9	54.5	56.6	56.3	58.4	56.9	59.0	58.7	62.1	59.4	60.2	59.9	64.5

DIMENSIONS

SINGLE BEARING MACHINES ONLY									
ADAPTOR	A	В	С	D	COUPLING DISCS	AN			
SAE 1	724,3	661,3	224,3	191,3	SAE 8	61,90			
SAE 2	710	647	210	177	SAE 10	53,98			
SAE 3	710	647	210	177	SAE 11,5	39,68			
SAE 4	710	647	210	177	SAE 14	25,40			

STAMFORD Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

6BTA5.9-G5

> Specification sheet

Our energy working for you.™

Description

The B5.9 engine has established an unrivalled reputation for reliability, incorporating features designed to maximise engine integration within OEM installation.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO 9002 orTS16949.

Features

Single Poly Vee belt drive for fan, alternator and water pump, with self-tensioning idler for minimum maintenance.

Inline-type Bosch A-Series pump operates at high injection pressures for cleaner combustion and lower emissions.

Spin-on fuel filter and full-flow lubricating oil filter.

Top mounted Holset HX35 turbocharger for increased power, fuel economy, and lower smoke and noise levels.

Coolpac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gros	s Engine Ou	utput	Net	Engine Out	put	Турі			Typical Generator Set Output			
Standby	Prime	Base	Standby	Prime	Base	Standby (ESP)		Prime	e (PRP)	Base	(COP)	
	kWm/BHP			kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA	
102/137	93/125	82/110	98/131	90/121	79/106	88	110	80	100	64	80	

General Engine Data

Туре	4 cycle, in-line, Turbo Charged
Bore mm	102 mm (4.02 in.)
Stroke mm	120 mm (4.72 in.)
Displacement Litre	5.9 litre (359.0 in. ³)
Cylinder Block	Cast iron, 6 cylinder
Battery Charging Alternator	55 amps
Starting Voltage	12 volt, 55 Amp negative ground
Fuel System	Direct injection
Fuel Filter	Spin-on fuel filters with water separator
Lube Oil Filter Type(s)	Spin-on full flow filter
Lube Oil Capacity (I)	16.4
Flywheel Dimensions	3/11.5

Coolpac Performance Data

Cooling System Design	Jacket Water After Cooled
Coolant Ratio	50% ethylene glycol; 50% water
Coolant Capacity (I)	19.75
Limiting Ambient Temp.**	56.0
Fan Power(hp)	10.7
Cooling System Air Flow (m ³ /s)**	3.59
Air Cleaner Type (Normal Duty)	Dry replaceable element with restriction indicator
** @ 42 mm 11 ² 0 at 4000/ Drima	

** @ 13 mm H²0 at 100% Prime

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Weight & Dimensions

	Length	Width	Height	Weight (dry)
	mm	mm	mm	kg
Engine only*	1065	698	981	402
Coolpac	1526	817	1262	505

*Fan to flywheel

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph							
Standby Power											
100	102	137	27	7.2							
Prime Powe	er										
100	93	125	25	6.6							
75	70	94	18	4.8							
50	47	63	12	3.3							
25	23	31	7	1.9							
Continuous	Continuous Power										
100	82	110	21	5.6							

Cummins G Drive Engines Asia Pacific

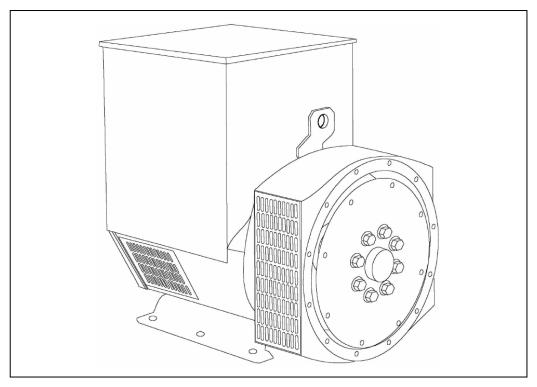
10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399 Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Mexico

Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

North America


1400 73rd Avenue N.E. Minneapolis, MN 55432 USA

Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

UCI274C - Technical Data Sheet

UCI274C SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

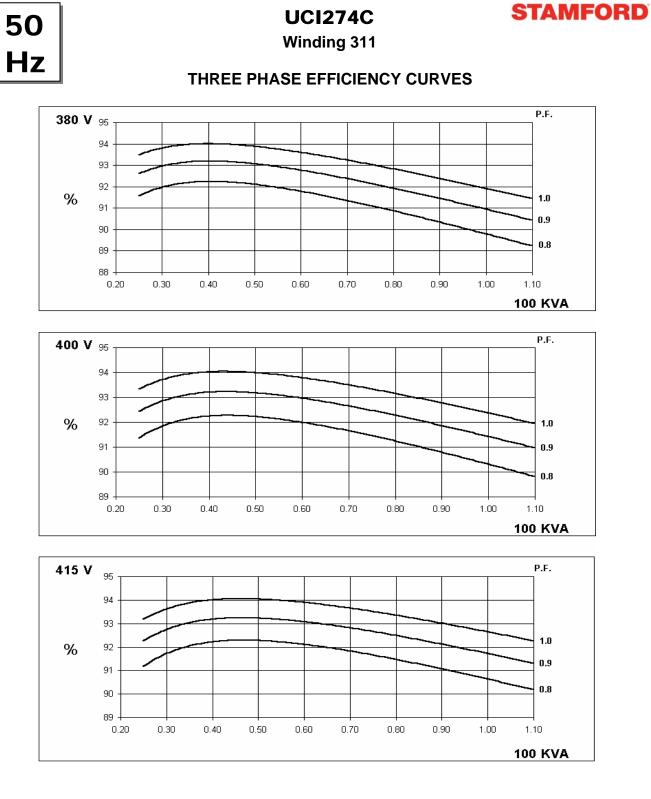
The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

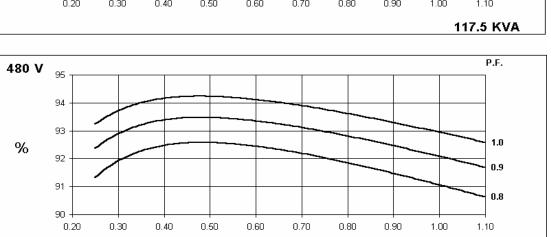
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.


NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

Front cover drawing typical of product range.

WINDING 311

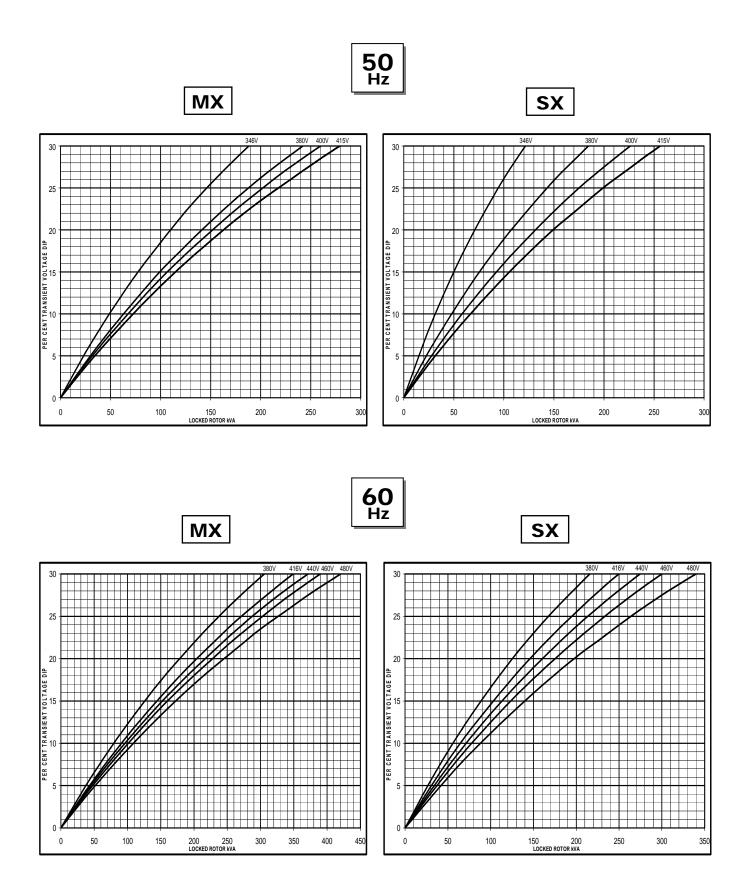
			IDING 31	1				
CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.					
A.V.R.	MX321	MX341						
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING			
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECRE	MENT CUR	/ES (page 7)			
CONTROL SYSTEM	SELF EXCI	ſED						
A.V.R.	SX460	AS440						
VOLTAGE REGULATION	± 1.0 %	± 1.0 %	With 4% FN	GINE GOVE	RNING			
SUSTAINED SHORT CIRCUIT			DES NOT SU		-	T CURRENT	-	
INSULATION SYSTEM				CLAS	<u>е н</u>			
PROTECTION				IP2				
RATED POWER FACTOR				0.	-			
			DO	-				
				TWO T	-			
WINDING LEADS				1:	_			
STATOR WDG. RESISTANCE		0.059 C	hms PER PH	-		STAR CONNE	ECTED	
ROTOR WDG. RESISTANCE				1.12 Ohm:				
EXCITER STATOR RESISTANCE				20 Ohms	at 22°C			
EXCITER ROTOR RESISTANCE			0.091	Ohms PER	PHASE AT 2	22°C		
R.F.I. SUPPRESSION	BS EN	61000-6-2 8	BS EN 6100	0-6-4,VDE 0	875G, VDE 0	875N. refer t	to factory for	others
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTING	G BALANCE	D LINEAR LC	DAD < 5.0%	
MAXIMUM OVERSPEED				2250 R	ev/Min			
BEARING DRIVE END				BALL. 6315-	2RS (ISO)			
BEARING NON-DRIVE END				BALL. 6310-	2RS (ISO)			
		1 BE/	ARING		-	2 BEA	RING	
WEIGHT COMP. GENERATOR		40	6 kg			420	kg	
WEIGHT WOUND STATOR			1 kg			131	-	
WEIGHT WOUND ROTOR			78 kg			122.8	-	
			8 kgm ²			0.9781		
SHIPPING WEIGHTS in a crate PACKING CRATE SIZE			9 kg x 103(cm)			452 105 x 67 >		
FACKING CRATE SIZE			Hz			60	. ,	
TELEPHONE INTERFERENCE			<2%			TIF		
COOLING AIR			ec 1090 cfm			0.617 m ³ /se	c 1308 cfm	
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138
kVA BASE RATING FOR REACTANCE	100	100	100	N/A	112.5	117.5	117.5	125
Xd DIR. AXIS SYNCHRONOUS	2.45	2.21	2.05	-	2.76	2.58	2.36	2.30
X'd DIR. AXIS TRANSIENT	0.20	0.18	0.17	-	0.24	0.22	0.21	0.20
X"d DIR. AXIS SUBTRANSIENT	0.14	0.13	0.12	-	0.16	0.15	0.14	0.13
Xq QUAD. AXIS REACTANCE	1.59	1.43	1.33	-	1.58	1.48	1.35	1.32
X"q QUAD. AXIS SUBTRANSIENT	0.18	0.16	0.15	-	0.23	0.21	0.20	0.19
X∟LEAKAGE REACTANCE	0.07	0.06	0.06	-	0.08	0.07	0.07	0.07
X2 NEGATIVE SEQUENCE	0.16	0.14	0.13	-	0.19	0.18	0.16	0.16
X0ZERO SEQUENCE	0.10	0.09	0.08	-	0.12	0.11	0.10	0.10
	IED	V	ALUES ARE			ND VOLTAG	E INDICATE	D
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.				0.02				
T'do O.C. FIELD TIME CONST.				0.00				
Ta ARMATURE TIME CONST.				0.00				
SHORT CIRCUIT RATIO		1/Xd						



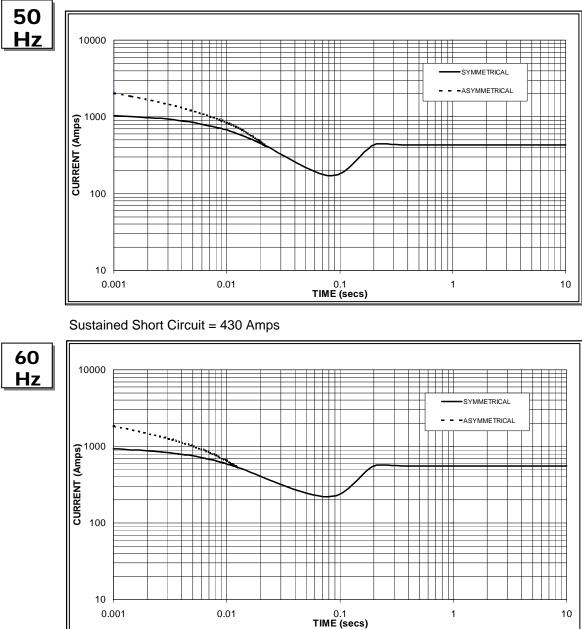
Winding 311

60

STAMFORD


125 KVA

5


Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 550 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz		
Voltage	Factor	Voltage	Factor	
380v	X 1.00	416v	X 1.00	
400v	X 1.07	440v	X 1.06	
415v	X 1.12	460v	X 1.12	
		480v	X 1.17	
The queteine	d ourroat vol			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

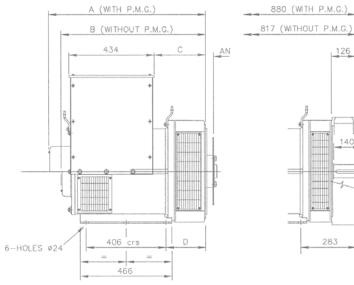
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

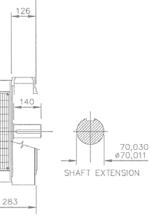
All other times are unchanged

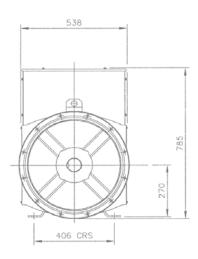
Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732




Winding 311 / 0.8 Power Factor


RATINGS

	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	″°C
5	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	84.0	84.0	84.0	N/A	100.0	100.0	100.0	N/A	106.0	106.0	106.0	N/A	110.0	110.0	110.0	N/A
	kW	67.2	67.2	67.2	N/A	80.0	80.0	80.0	N/A	84.8	84.8	84.8	N/A	88.0	88.0	88.0	N/A
	Efficiency (%)	90.7	91.1	91.3	N/A	89.8	90.3	90.6	N/A	89.5	90.0	90.4	N/A	89.2	89.8	90.2	N/A
	kW Input	74.1	73.8	73.6	N/A	89.1	88.6	88.3	N/A	94.7	94.2	93.8	N/A	98.7	98.0	97.6	N/A
										-							
6	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
H	- Derellel Ster (\/)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	97.5	106.3	106.3	112.5	112.5	117.5	117.5	125.0	116.3	125.0	125.0	132.5	120.0	127.5	127.5	137.5
	kW	78.0	85.0	85.0	90.0	90.0	94.0	94.0	100.0	93.0	100.0	100.0	106.0	96.0	102.0	102.0	110.0
	Efficiency (%)	90.9	91.0	91.4	91.5	90.2	90.6	91.0	91.1	90.0	90.2	90.7	90.8	89.8	90.1	90.6	90.6
	kW Input	85.8	93.5	93.0	98.4	99.8	103.8	103.3	109.8	103.4	110.9	110.3	116.7	106.9	113.2	112.6	121.4

DIMENSIONS

Γ	SING	LE BEARI	NG ADAP	TORS		COUPLING DIS	CS
Г	ADAPTOR	A	В	С	D	DISC	A
	SAE 1	813,3	750,3	274,3	216,3	SAE 10	53
	SAE 2	799	736	260	202	SAE 11,5	39
	SAE 3	799	736	260	202	SAE 14	25

STAMFORD Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

,98 ,68

6BTAA5.9-G3

> Specification sheet

Our energy working for you.™

Description

The B5.9 engine has established an unrivalled reputation for reliability, incorporating features designed to maximise engine integration within OEM installation. The 6BTAA5.9-G3 CoolPac is assembled in our new facility at Pirangut, India and utilises the latest Cummins manufacturing processes and Quality Standards.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO 9002 orTS16949.

Features

Single Poly Vee belt drive for fan, alternator and water pump, with self-tensioning idler for minimum maintenance.

Inline-type Bosch VE-Series pump operates at high injection pressures for cleaner combustion and lower emissions.

Spin-on fuel filter and full-flow lubricating oil filter.

Top mounted Holset HX35 turbocharger for increased power, fuel economy, and lower smoke and noise levels.

Coolpac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gros	s Engine Ou	utput	Net Engine Output				Тур	oical Gene	erator Set O	utput	
Standby	Prime	Base	Standby	Standby Prime Base			(ESP)	Prime (PRP)		Base (COP)	
	kWm/BHP			kWm/BHP			kVA	kWe	kVA	kWe	kVA
127/170	116/155	87/116	117/157	107/143	78/105	110	138	100	125	70	88

General Engine Data

Туре	4 cycle, in-line, Turbo Charged
Bore mm	102 mm (4.02 in.)
Stroke mm	120 mm (4.72 in.)
Displacement Litre	5.9 litre (360.0 in. ³)
Cylinder Block	Cast iron, 6 cylinder
Battery Charging Alternator	55 amps
Starting Voltage	12 volt, 55 Amp negative ground
Fuel System	Direct injection
Fuel Filter	Spin-on fuel filters with water separator
Lube Oil Filter Type(s)	Spin-on full flow filter
Lube Oil Capacity (I)	16.4
Flywheel Dimensions	3/11.5

Coolpac Performance Data

Cooling System Design	Jacket Water and Charge Air After Cooled
Coolant Ratio	50% ethylene glycol; 50% water
Coolant Capacity (I)	26
Limiting Ambient Temp.**	50DegC
Fan Power(hp)	8
Cooling System Air Flow (m ³ /s)**	3.40
Air Cleaner Type (Medium Duty)	Dry replaceable element with restriction indicator
** @ 13 mm H ² 0 at 100% Prime	

@ 13 mm H²0 at 100% Prime

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

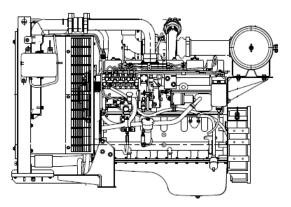
Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Shipping Weight & Dimensions

	Length	Width	Height	Weight (dry)
	mm	mm	mm	kg
CoolPac	1862	1162	1551	525

Fuel Consumption 1500 (50 Hz)


%	kWm	BHP	L/ph	US gal/ph					
Standby Po	Standby Power								
100	127	170	33	8.6					
Prime Pow	er								
100	116	155	29	7.7					
75	87	116	21	5.6					
50	58	78	14	3.7					
25	29	39	8	2					
Continuous	s Power								
100	87	116	21	5.6					

Cummins G Drive Engines

Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

6BTAA5.9-G6

> Specification sheet

Our energy working for you.™

Description

The B5.9 engine has established an unrivalled reputation for reliability, incorporating features designed to maximise engine integration within OEM installation. The 6BTAA5.9-G6 CoolPac utilises the latest Cummins manufacturing processes and Quality Standards.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO 9002 orTS16949.

Features

Single Poly Vee belt drive for fan, alternator and water pump, with self-tensioning idler for minimum maintenance.

Rotary-type Bosch pump operates at high injection pressures for cleaner combustion and lower emissions.

Spin-on fuel filter and full-flow lubricating oil filter.

Top mounted Holset HX35 turbocharger for increased power, fuel economy, and lower smoke and noise levels.

CoolPac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service delivered through a world class service network.

1500 rpm (50 Hz Ratings)

	Gross Engine Output		Typical Genera	tor Set Output		
Standby	Standb	y (ESP)	Prime	(PRP)		
	kWm/BHP		kWe	kVA	kWe	kVA
145/195	135/180	135/180	120	150	109	136

1800 rpm (60 Hz Ratings)

		Typical Genera	ator Set Output			
Standby	tandby Prime Base Standby (ESP) Prime			(PRP)		
	kWm/BHP		kWe	kVA	kWe	kVA
160/215	150/205	145/195	135	169	123	153

General Engine Data

Туре	4- cycle, In-line, 6- cylinder, Turbocharged and Charge Air Cooled, Diesel
Bore mm	102 mm (4.02 in.)
Stroke mm	120 mm (4.72 in.)
Displacement Litre	5.9 litre (360.0 in. ³)
Cylinder Block	Cast iron, 6 cylinder
Battery Charging Alternator	55 amps
Starting Voltage	12 volt, 55 Amp negative ground
Fuel System	Direct injection
Fuel Filter	Venturi Combo Stratapore Filter
Lube Oil Filter Type(s)	Venturi Combo Stratapore Filter
Lube Oil Capacity (I)	16.4
Flywheel Dimensions	SAE3/11.5

Coolpac Performance Data

Charged Air Cooled
50% ethylene glycol; 50% water
21.4
50 Degrees
10
3.7 for 60Hz & 2.7 for 50Hz
Dry replaceable element with restriction indicator

** @ 13 mm H₂0

Weight and Dimensions

	Length	Width	Height	Weight (dry)
	mm	mm	mm	kg
CoolPac	1723	896	1380	718

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph			
Standby Power							
100	145	195	37.05	9.89			
Prime Power							
100	135	180	35.16	9.46			
75	101	165	26.58	7.14			
50	68	91	17.92	4.80			
25	34	46	9.43	2.50			
Continuous Power							
100	135	180	35.16	9.46			

Cummins G-Drive Engines

Asia Pacific
10 Toh Guan Road
#07-01
TT International Tradepark
Singapore 608838
Phone 65 6417 2388
Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Mexico

Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

North America

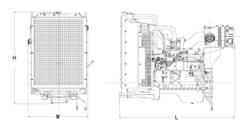
1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

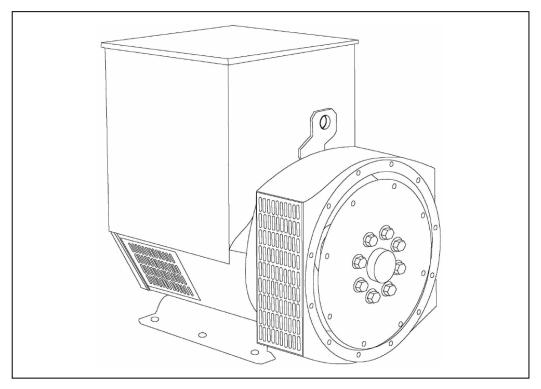

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.


Fuel Consumption 1800 (60 Hz)

%	kWm	BHP	L/ph	US gal/ph			
Standby Power							
100	160	215	41.14	10.86			
Prime Power							
100	150	205	36.46	10.42			
75	113	152	31.47	8.31			
50	75	101	20.71	5.46			
25	38	51	11.71	3.09			
Continuous Power							
100	145	195	36.59	9.66			

UCI274E - Technical Data Sheet

UCI274E SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

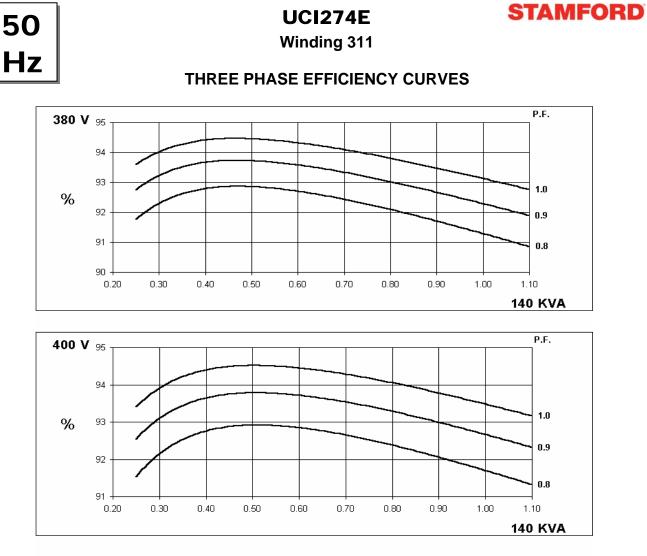
All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

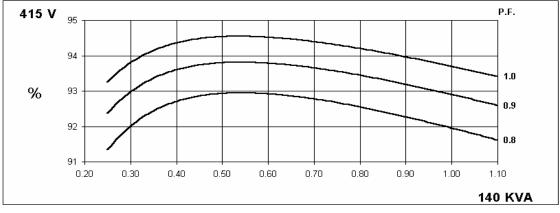
QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

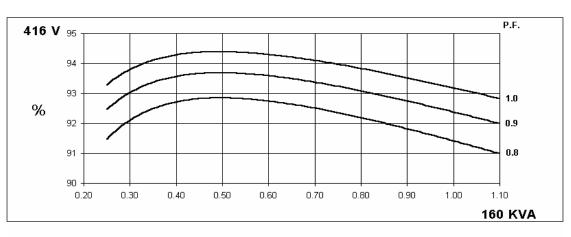
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

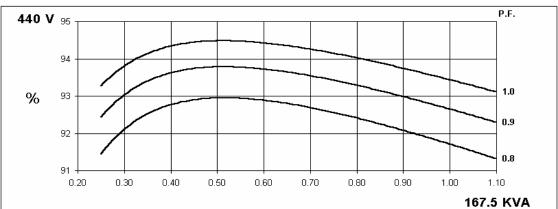

Front cover drawing typical of product range.

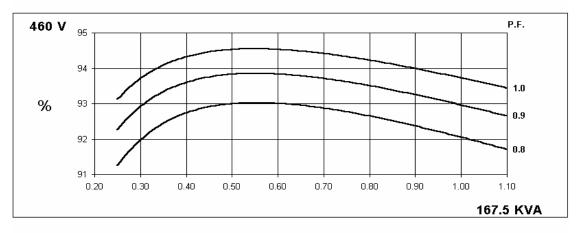

UCI274E

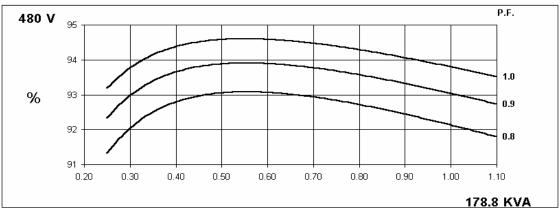
WINDING 311

_		VVIN	IDING 31	1					
CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.						
A.V.R.	MX321	MX341							
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING				
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECREMENT CURVES (page 7)						
CONTROL SYSTEM	SELF EXCI								
A.V.R.	SX460	AS440							
	± 1.0 % ± 1.0 % With 4% ENGINE GOVERNING SERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT								
SUSTAINED SHORT CIRCUIT	SERIES 4 C	ONTROL DO	DES NOT SU	STAIN A SH	ORT CIRCU	T CURRENT			
INSULATION SYSTEM	CLASS H				SS H				
PROTECTION	IP23								
RATED POWER FACTOR	0.8								
STATOR WINDING			DOL	JBLE LAYER		RIC			
WINDING PITCH	TWO THIRDS								
WINDING LEADS		12							
STATOR WDG. RESISTANCE		0.0317 (Ohms PER PI	HASE AT 22	C SERIES	STAR CONN	ECTED		
ROTOR WDG. RESISTANCE				1.34 Ohm	s at 22°C				
EXCITER STATOR RESISTANCE				20 Ohms	at 22°C				
EXCITER ROTOR RESISTANCE			0.091	Ohms PER	PHASE AT 2	22°C			
R.F.I. SUPPRESSION	BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE 0875N. refer to factory for others								
WAVEFORM DISTORTION		NO LOAD <	: 1.5% NON-	DISTORTING	BALANCE	D LINEAR LC)AD < 5.0%		
MAXIMUM OVERSPEED				2250 R	ev/Min				
BEARING DRIVE END				BALL. 6315-	2RS (ISO)				
BEARING NON-DRIVE END				BALL. 6310-	2RS (ISO)				
		1 BE/	ARING		()	2 BEA	RING		
WEIGHT COMP. GENERATOR		49	2 kg		511 kg				
WEIGHT WOUND STATOR		18	0 kg		180 kg				
WEIGHT WOUND ROTOR	167.51 kg				156.55 kg				
WR ² INERTIA			1 kgm ²		1.2765 kgm ²				
SHIPPING WEIGHTS in a crate			5 kg x 103(cm)		539 kg 123 x 67 x 103(cm)				
PACKING CRATE SIZE			Hz				. ,		
TELEPHONE INTERFERENCE			<2%		60 Hz TIF<50				
COOLING AIR		0.514 m³/se	ec 1090 cfm		0.617 m ³ /sec 1308 cfm				
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277	
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138	
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138	
kVA BASE RATING FOR REACTANCE VALUES	140	140	140	N/A	160	167.5	167.5	178.8	
Xd DIR. AXIS SYNCHRONOUS	2.34	2.11	1.96	-	2.68	2.51	2.29	2.25	
X'd DIR. AXIS TRANSIENT	0.21	0.19	0.18	-	0.25	0.23	0.21	0.21	
X"d DIR. AXIS SUBTRANSIENT	0.14	0.13	0.12	-	0.17	0.16	0.15	0.14	
Xq QUAD. AXIS REACTANCE	1.53	1.38	1.28	-	1.74	1.63	1.49	1.46	
X"q QUAD. AXIS SUBTRANSIENT	0.18	0.16	0.15	-	0.22	0.21	0.19	0.18	
XL LEAKAGE REACTANCE	0.08	0.08	0.07	-	0.09	0.08	0.08	0.08	
X2 NEGATIVE SEQUENCE	0.16	0.14	0.13	-	0.19	0.18	0.16	0.16	
	0.10	0.09	0.08		0.11	0.10		0.09	
REACTANCES ARE SATURA T'd TRANSIENT TIME CONST.		V.	ALUES ARE	PER UNIT A 0.03				ט	
T''d SUB-TRANSTIME CONST.				0.0					
T'do O.C. FIELD TIME CONST.	0.85 s								
Ta ARMATURE TIME CONST.				0.00					
SHORT CIRCUIT RATIO	1/Xd								

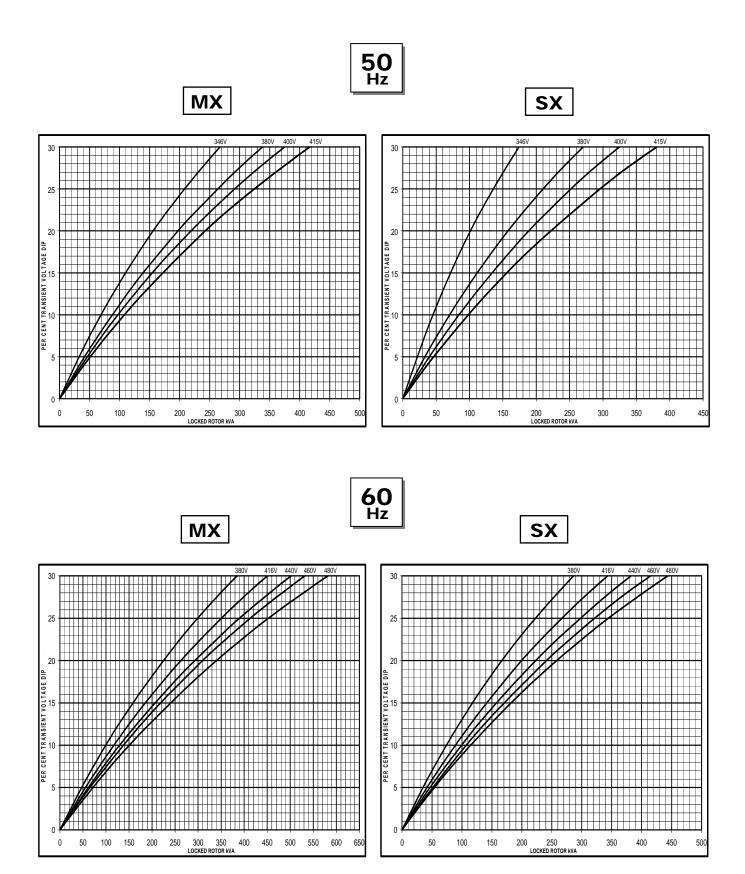


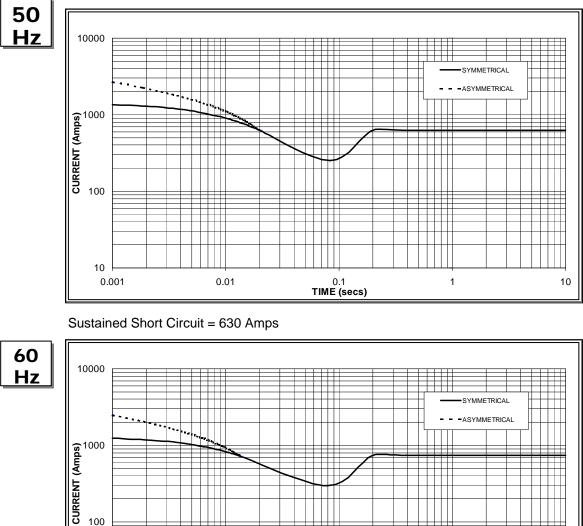

Winding 311


60


Hz

THREE PHASE EFFICIENCY CURVES




Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 740 Amps

0.01

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

10

0.001

50	Hz	60Hz			
Voltage	Factor	Voltage	Factor		
380v	X 1.00	416v	X 1.00		
400v	X 1.07	440v	X 1.06		
415v	X 1.12	460v	X 1.12		
		480v	X 1.17		
The quetoing	d ourropt vol	ua ia aonatan	t irragadiva		

The sustained current value is constant irrespective of voltage level

Note 2

0.1 TIME (secs)

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

10

1

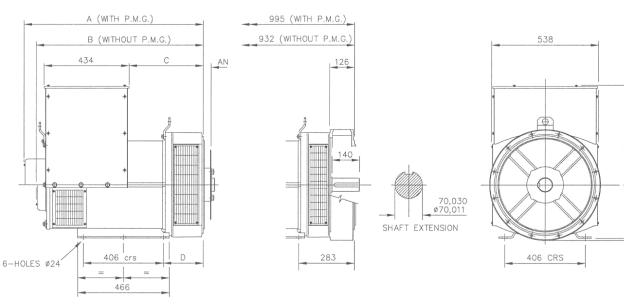
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732



Winding 311 / 0.8 Power Factor

RATINGS

															-			
	C	Class - Temp Rise	Co	ont. F -	105/40°	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	Sta	andby -	163/27	°C
5	Λ	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	-	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	2	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
		kVA	125.0	125.0	125.0	N/A	140.0	140.0	140.0	N/A	145.0	145.0	145.0	N/A	150.0	150.0	150.0	N/A
		kW	100.0	100.0	100.0	N/A	112.0	112.0	112.0	N/A	116.0	116.0	116.0	N/A	120.0	120.0	120.0	N/A
		Efficiency (%)	91.7	92.1	92.3	N/A	91.3	91.7	92.0	N/A	91.1	91.6	91.8	N/A	91.0	91.4	91.7	N/A
		kW Input	109.1	108.6	108.3	N/A	122.7	122.1	121.7	N/A	127.3	126.6	126.4	N/A	131.9	131.3	130.9	N/A
							-				-				-			
6	0	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
H	-	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	-	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
		kVA	140.0	143.8	143.8	160.0	160.0	167.5	167.5	178.8	170.0	175.0	175.0	187.5	175.0	181.3	181.3	193.8
		kW	112.0	115.0	115.0	128.0	128.0	134.0	134.0	143.0	136.0	140.0	140.0	150.0	140.0	145.0	145.0	155.0
		Efficiency (%)	91.9	92.2	92.5	92.5	91.4	91.7	92.1	92.1	91.2	91.5	91.9	92.0	91.0	91.4	91.8	91.9
		kW Input	121.9	124.8	124.4	138.4	140.0	146.1	145.5	155.3	149.1	153.0	152.3	163.0	153.8	158.7	158.0	168.7

DIMENSIONS

SIN	GLE BEAR	COUPLING DISCS			
ADAPTOR	A	В	С	D	DISC AN
SAE 1	928,3	865,3	389,3	216,3	SAE 10 53,98
SAE 2	914	851	375	202	SAE 11,5 39,68
SAE 3	914	851	375	202	SAE 14 25,40

STAMFORD Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100 785

270

6BTAA5.9-G7

> Specification sheet

Our energy working for you.™

Description

The B5.9 engine has established an unrivalled reputation for reliability, incorporating features designed to maximise engine integration within OEM installation. The 6BTAA5.9-G7 CoolPac utilises the latest Cummins manufacturing processes and Quality Standards.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO 9002 orTS16949.

Features

Single Poly Vee belt drive for fan, alternator and water pump, with self-tensioning idler for minimum maintenance.

Rotary-type Bosch pump operates at high injection pressures for cleaner combustion and lower emissions.

Spin-on fuel filter and full-flow lubricating oil filter.

Top mounted Holset HX35 turbocharger for increased power, fuel economy, and lower smoke and noise levels.

CoolPac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service delivered through a world class service network.

1500 rpm (50 Hz Ratings)

	Gross Engine Output		Typical Generator Set Output					
Standby	Prime	Base	Standb	y (ESP)	Prime (PRP)			
	kWm/BHP				kWe	kVA		
160/215	145/195	101/135	136	170	124	155		

General Engine Data

Туре	4- cycle, In-line, 6- cylinder, Turbocharged and Charge Air Cooled, Diesel
Bore mm	102 mm (4.02 in.)
Stroke mm	120 mm (4.72 in.)
Displacement Litre	5.9 litre (360.0 in. ³)
Cylinder Block	Cast iron, 6 cylinder
Battery Charging Alternator	55 amps
Starting Voltage	12 volt, 55 Amp negative ground
Fuel System	Direct injection
Fuel Filter	Venturi Combo Stratapore Filter
Lube Oil Filter Type(s)	Venturi Combo Stratapore Filter
Lube Oil Capacity (I)	16.4
Flywheel Dimensions	SAE3/11.5

Coolpac Performance Data

Cooling System Design	Charged Air Cooled
Coolant Ratio	50% ethylene glycol; 50% water
Total Coolant Capacity (I)	21.4
Limiting Ambient Temp**	50 Degrees
Fan Power (kWm)	10
Cooling System Air Flow (m ³ /s)**	3.7
Air Cleaner Type (heavy duty)	Dry replaceable element with restriction indicator

** @ 13 mm H₂0

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Weight and Dimensions

	Length	Width	Height	Weight (dry)
	mm	mm	mm	kg
CoolPac	1723	896	1380	718

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph					
Standby Power									
100	160	215	41	10.9					
Prime Power									
100	145	195	37	9.8					
75	109	146	29	7.5					
50	73	98	19	5.0					
25	36	49	9	2.5					
Continuous P	Continuous Power								
100	101	135	26	6.9					

Cummins G-Drive Engines

Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399 Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255002

Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552

Phone 55 11 2186 4552 Fax 55 11 2186 4729

Mexico

Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

North America

1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

©2013 | Cummins G-Drive Engines | Specifications Subject to Change Without Notice | Cummins is a registered trademark of Cummins Inc. EMERS-5816a-EN (12/13)

Specification sheet

S3.8-G4 **Fuel Optimized**

Description

The Cummins 'S Series' engine powered CoolPac sets offer the lowest cost of maintenance thereby proving to be the most economical power solution. With the robust design and integrated technologies, the S Series CoolPac can command an unrivalled reputation for reliability and performance.

The S series Engines have a distinguished reputation and long history for durability.

The rugged and reliable Cummins 'S Series' Engines gives you a compact high performance engine design for your generator application.

Features

Bosch - Direct injection in-line pump for cleaner, more efficient fuel consumption.

12 volt electrics package as standard, with starter, alternator and fuel solenoid.

SAE '3/10' flywheel.

Fleetguard® filters.

Low-Maintenance Fuel Filter Assembly – The Fuel filter Incorporates an integral water drain facility and a 500-hour filter life using standard Fleetguard® filters.

Low-Maintenance Lube Oil Filter Assembly – The Lube Oil filter also has a 500-hour filter life using standard

Integrated Design - CoolPac products are supplied fitted with cooling package and medium duty air cleaner for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

1500 rpm (50 Hz ratings)

Gros	Gross engine output			engine out	Typical generator set output						
Standby	Prime	Base	Standby Prime Base			Standby (ESP) Prime			(PRP) Base (COP		(COP)
	kWm/BHP			kWm/BHP			kVA	kWe	kVA	kWe	kVA
43.4/58.2	38.7/51.9	27.1/36.3	41.4/55.5	36.7/49.1	25.1/33.6	35	44	32	40	22.4	28

1800 rpm (60 Hz ratings)

Gros	Gross engine output Net engine output			Typical generator set output							
Standby	Prime	Base	Standby	Prime Base Standby (ESP)			Prime	(PRP)	Base (COP)		
	kWm/BHP			kWm/BHP			kVA	kWe	kVA	kWe	kVA
-	-	-	-	-	-	-	-	-	-	-	-

General engine data

Туре	In line, Radiator cooled
Bore mm	97 mm (3.82 in.)
Stroke mm	128 mm (5.0 in.)
Displacement litre	3.8 litre (232 in. ³)
Cylinder block	Cast iron, 4 cylinder
Battery charging alternator	12V, 35 amps
Starting voltage	12 volt, negative ground
Fuel system	Direct injection
Fuel filter	Spin-on
Lube oil filter type(s)	Spin-on
Lube oil capacity (I)	10
Flywheel dimensions	SAE3/10

Coolpac performance data

Jacket Water cooled
50% ethylene glycol; 50% water
11
50
2
0.84
Dry type, replaceable, medium duty

** @ 0.25" H20

Fuel consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	g/kWh				
Standby Power								
100	43.4	58.2	11.2	3				
Prime Pow	Prime Power							
100	38.7	51.9	9.9	2.6				
75	28.9	38.9	7.6	2.0				
50	21.5	28.8	5.4	1.4				
25	9.7	13	3.5	0.9				
Continuou	Continuous Power							
100	27	36	7.2	1.9				

Fuel consumption 1800 (60 Hz)

%	kWm	BHP	L/ph	g/kWh				
Standby Power								
100	-	-	-	-				
Prime Pow	Prime Power							
100	-	-	-	-				
75	-	-	-	-				
50	-	-	-	-				
25	-	-	-	-				
Continuous Power								
100	-	-	-	-				

Weights and dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
1135	740	980	

Ratings definitions

Emergency Standby	Limited-Time Running	Prime Power (PRP):	Base Load (Continuous)
Power (ESP):	Power (LTP):		Power (COP):
Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.	Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.	Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.	Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

For more information contact your local Cummins distributor

Our energy working for you.™

©2019 Cummins Inc. All rights reserved. Cummins is a registered trademark of Cummins Inc. PowerCommand, AmpSentry, InPower and "Our energy working for you." are trademarks of Cummins Inc. Other company, product, or service names may be trademarks or service marks of others. Specifications are subject to change without notice. S3.8-G4 (4/19)

QSZ13-G5

Emissions Compliance: EU Stage II @ 50 Hz U.S. EPA Tier 2 @ 60 Hz

> Specification sheet

Our energy working for you.™

The QSZ13 engine is designed to meet the European Union (EU) Stage II and EPA Tier 2 generator set emission standards. Evolved from the proven and successful base engine platform of an automotive engine, which is widely accepted for its high levels of in-service reliability and performance, the QSZ13 engine utilizes the Cummins High Pressure Injection (XPI) fuel system.

The QSZ13 engine was developed using Cummins unique in-house capability, adapting core technologies in electronics, fuel systems, turbo charging, filtration, and emissions. The QSZ13 engine has low derating thresholds for temperature and altitude, coupled with 50°C ambient capable cooling system makes these engines top performers in the harshest conditions.

Robust, clean, resilient and capable of matching the duty cycle and operating conditions of many applications, the QSZ13 engine is ideally suited for both open and enclosed applications in either static or mobile equipment.

This engine has been built to comply with CE certification.

150 9001

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

1500 rpm (50 Hz Ratings)

Features

Coolpac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. A Heavy duty air cleaner is offered as an option.

Full Authority Electronic Dual Speed Engine - Advanced engine monitoring, diagnostics, protection and control, coupled with the XPI fuel system, capable of delivering extreme fuel injection pressures with multiple injection events, results in reduced emissions, improved fuel efficiency, lower noise and enhanced engine performance.

Fuel Filtration System – Three-stage fuel filtration system provides high levels of protection against fuel becoming contaminated with dust, dirt, or water.

Controls - Fitted with a Power Generation Interface (PGI) to improve emissions, the widely accepted SAE J1939 industry standard CAN based communication network provides advanced engine protection, ensuring faster connectivity along with a superior fault finding capability.

Crankcase Breather – Cummins patented variable impactor breather design and coalescing filter removes emissions as required by regulations, with the added benefit of eliminating oil drips and mist while keeping the surroundings clean.

Reduced Operating Costs – Extended service intervals for the oil and filter changes.

Service and Support – G-Drive products are backed by an uncompromising level of technical support and after sales support, delivered through a world class service network.

Gross Engine Output Net Engine Output				Тур	oical Gene	rator Set O	utput				
Standby	Prime	Base	Standby	Prime	Base	Standby	(ESP)	Prime	e (PRP)	Base	(COP)
	kWm/BHP kWm/BHP			kWe	kVA	kWe	kVA	kWe	kVA		
470/630	411/551	370/496	452/605	393/526	352/470	400	500	364	455	330	413

1800 rpm (60 Hz Ratings)

Gross Engine Output Net Engine Output				Тур	oical Gene	rator Set O	utput				
Standby	Prime	Base	Standby	Prime	Base	Standby	(ESP)	Prime	e (PRP)	Base	(COP)
	kWm/BHP kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA			
500/670	437/586	393/527	482/645	440/589	394/528	440	550	400	500	348	435

General Engine Data

Туре	4 Cycle, In-line, Turbocharged and Charge Air Cooled
Bore	130 mm (5.12 in.)
Stroke	163 mm (6.42 in.)
Displacement	13 litre (793 in. ³)
Cylinder Block	Cast iron, 6 cylinder
Battery Charging Alternator	35 amps
Starting Voltage	24 volt
Fuel System	XPI
Fuel Filter	Engine mounted, primary spin-on fuel filter, 7 micron, with water separator & Water in Fuel (WIF) sensor and secondary 3 micron spin-on fuel filter. Remote mounted 10 micron pre fuel filter supplied as standard scope.
Lube Oil Filter Type(s)	Spin-on full flow filter
Lube Oil Capacity	78 litre
Flywheel Dimensions	SAE1

Coolpac Performance Data

Cooling System Design	Air to Air, Charge Air Cooled
Coolant Ratio	50% ethylene glycol; 50% water
Total Coolant Capacity	62 litre
Limiting Ambient Temp. **	50° C
Fan Power (kWm)	18.1 (50 Hz), 31.5 (60 Hz)
Cooling System Air Flow (m ³ /s)**	8.1 (50 Hz), 10.3 (60 Hz)
Air Cleaner Type	Normal Duty dry replaceable element with restriction Indicator

** @ 13 mm H²O duct restriction

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
1389	1276	1050	1,245

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/h	US gal/h				
Standby Power								
100	470	630	107	28.3				
Prime Power								
100	411	551	93	24.6				
75	308	413	70	18.6				
50	205	275	49	13				
25	103	138	30	7.9				
Continuous Power								
100	370	496	84	22.2				

Cummins G-Drive Engines

Asia Pacific

10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399 Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

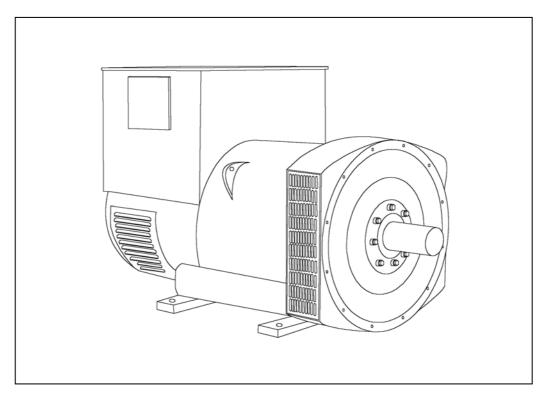
Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Fuel Consumption 1800 (60 Hz)

%	kWm	BHP	L/h	US gal/h				
Standby P	ower							
100	500	670	117	30.9				
Prime Power								
100	437	586	107	28.3				
75	328	440	81	21.4				
50	218	293	54	14.3				
25	110	147	35	9.2				
Continuous Power								
100	393	527	96	25.4				

Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

North America 1400 73rd Avenue N.E. Minneapolis, MN 55432


USA

Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

HCI 534C/544C - Technical Data Sheet

SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The SX440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

If 3-phase sensing is required with the self-excited system, the SX421 AVR must be used.

SX421 AVR

This AVR also operates in a self-excited system. It combines all the features of the SX440 with, additionally, three-phase rms sensing for improved regulation and performance. Over voltage protection is provided via a separate circuit breaker. An engine relief load acceptance feature is built in as standard.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

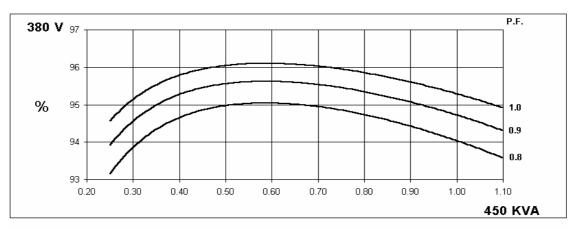
Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

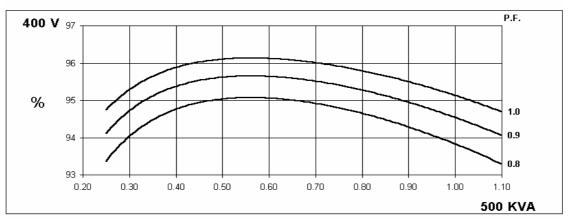
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

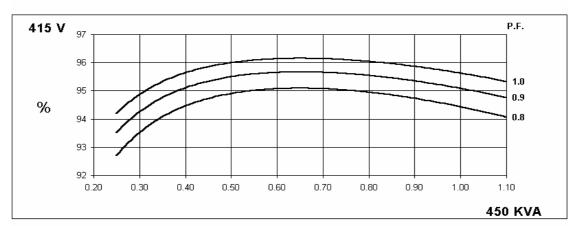
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

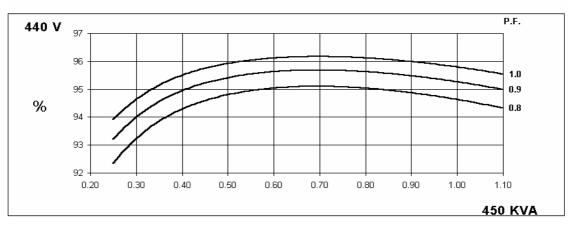
Front cover drawing typical of product range.

WINDING 311

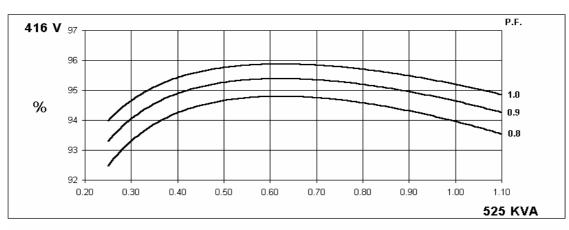

CONTROL SYSTEM	SEPARATEI	Y EXCITED	BYPMG							
A.V.R.	MX321	MX341	D11.10.							
VOLTAGE REGULATION			With 4% EN							
	± 0.5 %	± 1.0 %								
SUSTAINED SHORT CIRCUIT	REFER TO S	SHORT CIRC		IENT CURVE	ES (page 7)					
CONTROL SYSTEM	SELF EXCIT	SELF EXCITED								
A.V.R.	SX440	SX421								
VOLTAGE REGULATION	± 1.0 %	± 1.0 % ± 0.5 % With 4% ENGINE GOVERNING								
SUSTAINED SHORT CIRCUIT	SERIES 4 C	ONTROL DO	ES NOT SUS	TAIN A SHO	RT CIRCUIT	CURRENT				
INSULATION SYSTEM		CLASS H								
PROTECTION				IP2	23					
RATED POWER FACTOR				0.	8					
STATOR WINDING				DOUBLE L						
WINDING PITCH				TWO T						
WINDING LEADS				1110						
STATOR WDG. RESISTANCE		0.0065	Ohms PER P		_					
ROTOR WDG. RESISTANCE		0.0005		1.55 Ohm						
						07511	. fo atom . fo a o	4la a na		
R.F.I. SUPPRESSION	BS EI		& BS EN 6100				•	thers		
WAVEFORM DISTORTION		NO LOAD	< 1.5% NON-) LINEAR LO	AD < 5.0%			
MAXIMUM OVERSPEED				2250 R						
BEARING DRIVE END				BALL. 62	20 (ISO)					
BEARING NON-DRIVE END				BALL. 63	14 (ISO)					
		1 BE/	ARING			2 BEA	RING			
WEIGHT COMP. GENERATOR			3 kg			1275	0			
WEIGHT WOUND STATOR			4 kg			584	0			
			2 kg			473	-			
WR ² INERTIA SHIPPING WEIGHTS in a crate			8 kgm ² 55 kg			6.6149 1395	-			
PACKING CRATE SIZE			x 124(cm)			166 x 87 x	-			
) Hz			60				
TELEPHONE INTERFERENCE			<2%		TIF<50					
COOLING AIR		1.035 m³/se	ec 2202 cfm			1.312 m ³ /se	c 2780 cfm			
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277		
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138		
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138		
kVA BASE RATING FOR REACTANCE	450	450	450	450	525	550	581	594		
Xd DIR. AXIS SYNCHRONOUS	3.27	2.95	2.74	2.44	3.94	3.69	3.57	3.35		
X'd DIR. AXIS TRANSIENT	0.18	0.16	0.15	0.13	0.18	0.17	0.16	0.15		
X"d DIR. AXIS SUBTRANSIENT	0.13	0.12	0.11	0.10	0.13	0.12	0.12	0.11		
Xq QUAD. AXIS REACTANCE	2.66	2.40	2.23	1.98	3.12	2.92	2.82	2.65		
X"q QUAD. AXIS SUBTRANSIENT	0.26	0.24	0.22	0.20	0.34	0.32	0.31	0.29		
XL LEAKAGE REACTANCE	0.07	0.06	0.06	0.05	0.08	0.07	0.07	0.07		
X2 NEGATIVE SEQUENCE	0.19	0.17	0.16	0.14	0.23	0.22	0.21	0.20		
X0ZERO SEQUENCE	0.11	0.10	0.09	0.08	0.11	0.10	0.10	0.09		
REACTANCES ARE SATURAT	TED	١	ALUES ARE			ND VOLTAGE	E INDICATED)		
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.	0.08s									
	0.012s 2s									
LEGO () C FIFLD LIME CONST	0.017s									
T'do O.C. FIELD TIME CONST. Ta ARMATURE TIME CONST.					-					

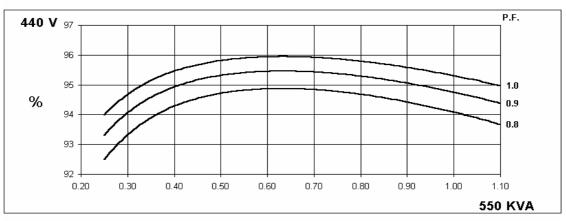

50 Hz

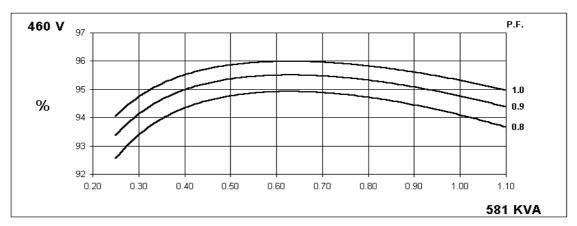


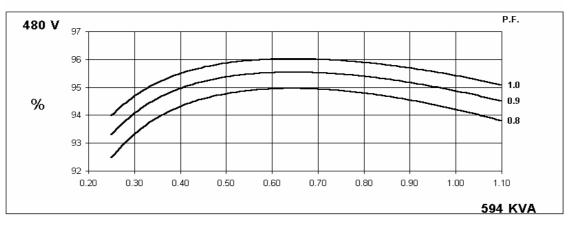

Winding 311

THREE PHASE EFFICIENCY CURVES



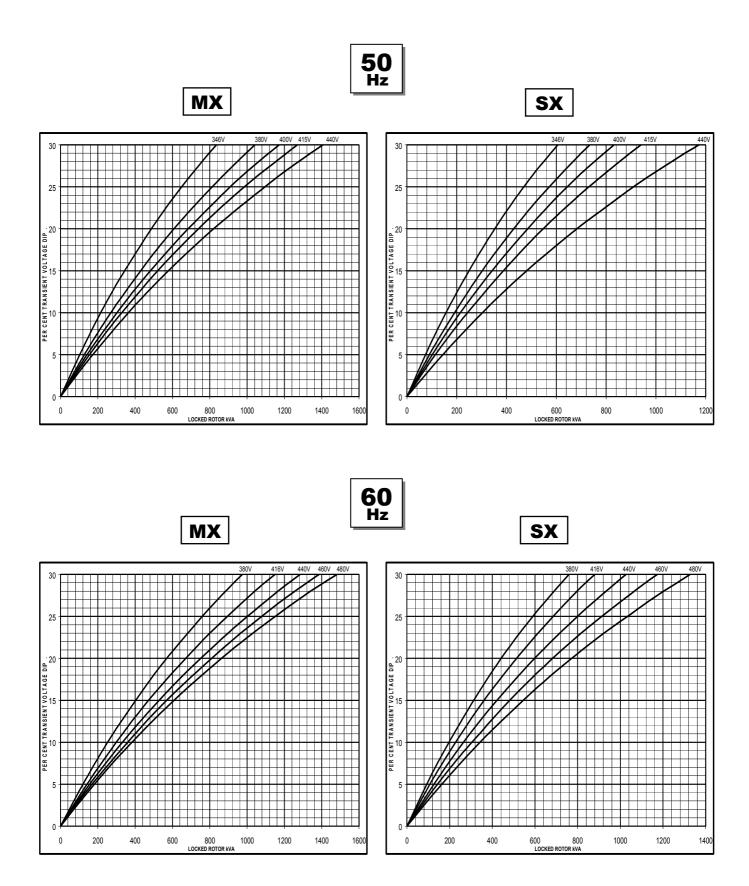

5

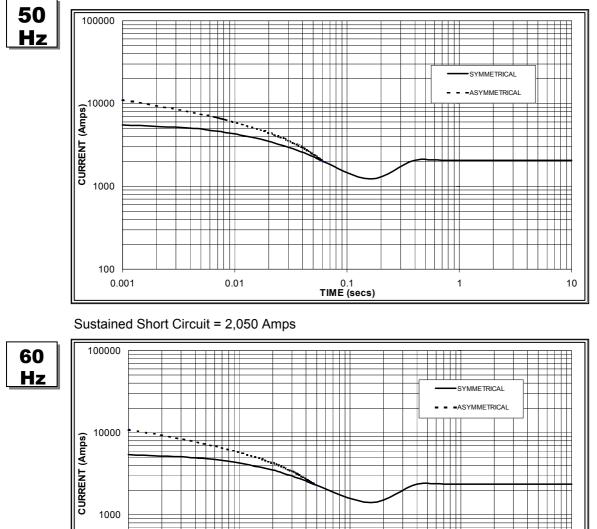

60


Hz

THREE PHASE EFFICIENCY CURVES

HCI534C/544C


Winding 311


Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 2,350 Amps

0.01

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

100

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	X 1.00			
400v	X 1.03	440v	X 1.06			
415v	X 1.05	460v	X 1.12			
440v	X 1.07	480v	X 1.20			

The sustained current value is constant irrespective of voltage level

Note 2

0.1

TIME (secs)

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

1

10

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

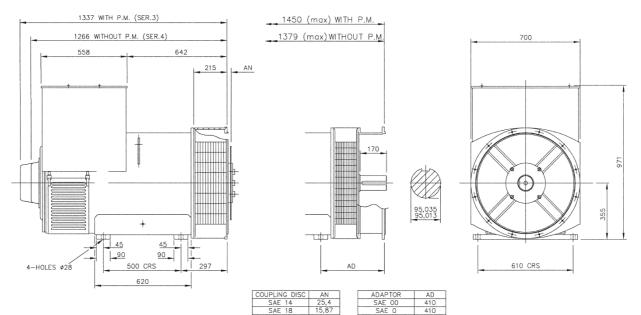
All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732



Winding 311 0.8 Power Factor

RATINGS

	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	Sta	andby -	163/27	′°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	400	445	400	400	450	500	450	450	478	512	478	478	495	520	495	495
	kW	320	356	320	320	360	400	360	360	382	410	382	382	396	416	396	396
	Efficiency (%)	94.5	94.3	94.8	94.9	94.0	93.8	94.4	94.6	93.8	93.7	94.2	94.4	93.6	93.6	94.1	94.3
	kW Input	339	378	338	337	383	426	381	381	408	437	406	405	423	444	421	420
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	481	500	531	538	525	550	581	594	550	581	613	625	569	600	631	644
	kW	385	400	425	430	420	440	465	475	440	465	490	500	455	480	505	515
	Efficiency (%)	94.3	94.4	94.4	94.5	94.0	94.1	94.1	94.2	93.8	93.9	93.9	94.0	93.6	93.7	93.7	93.9
	kW Input	408	424	450	455	447	468	494	504	469	495	522	532	486	512	539	549

DIMENSIONS

PO Box 17 • Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

QSX15-G8

Emissions Compliance:

Non-Certified or "Flex" program for EU Mobile applications. Formerly EU Stage2 @ 50Hz.

> Specification sheet

Our energy working for you.™

Description

The QSX15-Series is the first heavy-duty diesel with 24valve dual overhead camshaft technology. Yet it has an impressive 30% fewer parts than comparable diesels and a utilised design, which eliminates external lube, coolant and fuel lines, leading to higher reliability for such a high power output.

The 15 litre, six-cylinder QSX15 engine is ideally suited to both open and containerised applications in static or portable genset equipment. It can be matched to meet specific duty cycle and operating conditions of any genset.

ISO 9001

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

Holset HX82 Turbocharging - Wastegated design optimizes operation. Improved transient response and low fuel consumption.

Integrated Block Design - Integrated fluid circuits replace hoses and eliminate potential leaks.

High-Pressure Fuel Injection - Capable of over 1,900 bar (28,000 psi) for cleaner, more fuel-efficient combustion.

24-Valve Cylinder Head – Four valves per cylinder for increased power with faster response at every rpm.

Coolpac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Controls - Fitted with Power Generation Interface (PGI) to improve emissions.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gros	s Engine Ou	utput	Net	Engine Out	put	Typical Generator Set Output					
Standby	Prime	Base	Standby	Prime	Base	Standby (ESP)		andby (ESP) Prime (PRP)		Base (COP)	
	kWm/BHP		kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA	
500/670	444/595	317/425	477/639	426/571	299/400	440	550	400	500	281	351

1800 rpm (60 Hz Ratings)

Gros	s Engine O	utput	Net Engine Output			Typical Generator Set Output					
Standby	Prime	Base	Standby	Prime	Base	Standby (ESP)		Standby (ESP) Prime (PRP)		Base	(COP)
	kWm/BHP		kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA	
455/610	414/555	295/395	419/561	383/513	264/354	400	500	360	450	248	310

General Engine Data

Туре	4 Cycle, In-line, Turbo Charged, Air Cooled
Bore mm	137 mm (5.39 in.)
Stroke mm	169 mm (6.65 in.)
Displacement Litre	15 litre (912 in. ³)
Cylinder Block	Cast iron, 6 cylinder
Battery Charging Alternator	35 amps
Starting Voltage	24 volt
Fuel System	Direct injection
Fuel Filter	Spin-on fuel filters with water separator
Lube Oil Filter Type(s)	Spin-on full flow filter
Lube Oil Capacity (I)	91.0
Flywheel Dimensions	SAE1

Coolpac Performance Data

Cooling System Design	Air-Air Charge Cooled
Coolant Ratio	50% ethylene glycol; 50% water
Coolant Capacity (I)	42.0
Limiting Ambient Temp.** (°C)	55
Fan Power (kWm)	16
Cooling System Air Flow (m ³ /s)**	11.8
Air Cleaner Type	Light duty dry replaceable element with restriction indicator

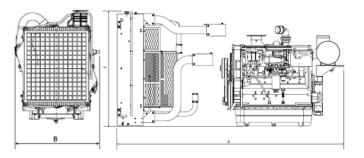
** @ 13 mm H²0 Duct Restriction

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):


Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

BHP

610

555

416

278

139

395

Fuel Consumption 1800 (60 Hz)

kWm

455

414

311

207

104

295

%

100

100

75

50

25

Continuous Power 100

Prime Power

Standby Power

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
2269	1332	1669	1658

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph						
Standby Power										
100	500	670	123.0	324						
Prime Power										
100	444	595	103.0	27.3						
75	333	447	78.7	20.8						
50	222	298	54.7	14.5						
25	111	149	30.3	8						
Continuous Power										
100	317	425	75.7	20						

Cummins G-Drive Engines

Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America

Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

North America

L/ph

107.0

97.6

75.2

53.4

31.8

72.7

US gal/ph

28.4

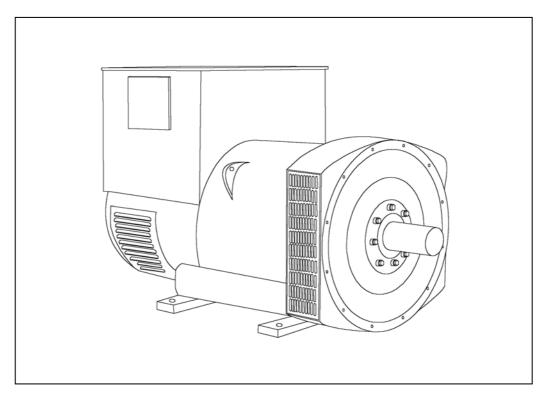
25.8

19.9

14.1

8.4

19.1


1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

HCI 534C/544C - Technical Data Sheet

SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The SX440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

If 3-phase sensing is required with the self-excited system, the SX421 AVR must be used.

SX421 AVR

This AVR also operates in a self-excited system. It combines all the features of the SX440 with, additionally, three-phase rms sensing for improved regulation and performance. Over voltage protection is provided via a separate circuit breaker. An engine relief load acceptance feature is built in as standard.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

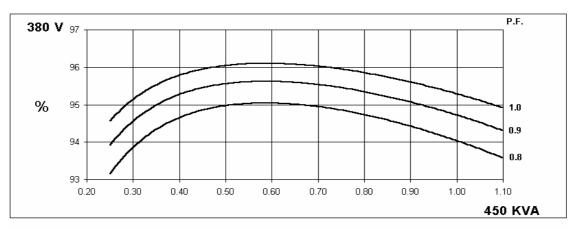
Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

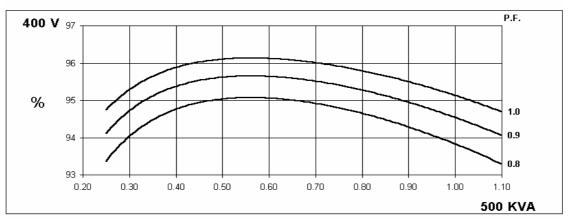
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

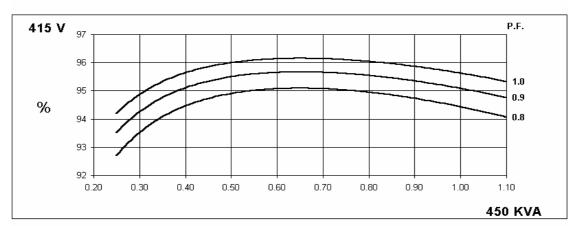
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

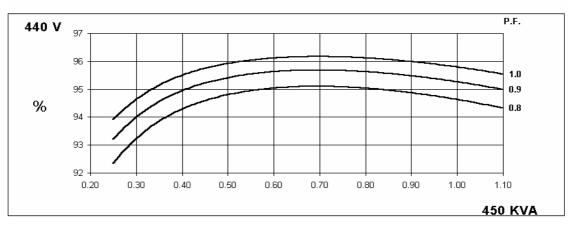
Front cover drawing typical of product range.

WINDING 311

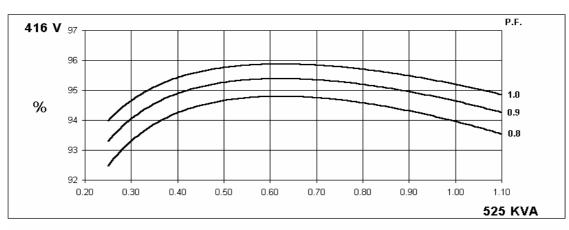

CONTROL SYSTEM	SEPARATEI	Y EXCITED	BYPMG							
A.V.R.	MX321	MX341	D11.10.							
VOLTAGE REGULATION			With 4% EN							
	± 0.5 %	± 1.0 %								
SUSTAINED SHORT CIRCUIT	REFER TO S	SHORT CIRC		IENT CURVE	ES (page 7)					
CONTROL SYSTEM	SELF EXCIT	SELF EXCITED								
A.V.R.	SX440	SX421								
VOLTAGE REGULATION	± 1.0 %	± 1.0 % ± 0.5 % With 4% ENGINE GOVERNING								
SUSTAINED SHORT CIRCUIT	SERIES 4 C	ONTROL DO	ES NOT SUS	TAIN A SHO	RT CIRCUIT	CURRENT				
INSULATION SYSTEM		CLASS H								
PROTECTION				IP2	23					
RATED POWER FACTOR				0.	8					
STATOR WINDING				DOUBLE L						
WINDING PITCH				TWO T						
WINDING LEADS				1110						
STATOR WDG. RESISTANCE		0.0065	Ohms PER P		_					
ROTOR WDG. RESISTANCE		0.0005		1.55 Ohm						
						07511	. fo atom . fo a o	4la a na		
R.F.I. SUPPRESSION	BS EI		& BS EN 6100				•	thers		
WAVEFORM DISTORTION		NO LOAD	< 1.5% NON-) LINEAR LO	AD < 5.0%			
MAXIMUM OVERSPEED				2250 R						
BEARING DRIVE END				BALL. 62	20 (ISO)					
BEARING NON-DRIVE END				BALL. 63	14 (ISO)					
		1 BE/	ARING			2 BEA	RING			
WEIGHT COMP. GENERATOR			3 kg			1275	0			
WEIGHT WOUND STATOR			4 kg			584	0			
			2 kg			473	-			
WR ² INERTIA SHIPPING WEIGHTS in a crate			8 kgm ² 55 kg			6.6149 1395	-			
PACKING CRATE SIZE			x 124(cm)			166 x 87 x	-			
) Hz			60				
TELEPHONE INTERFERENCE			<2%		TIF<50					
COOLING AIR		1.035 m³/se	ec 2202 cfm			1.312 m ³ /se	c 2780 cfm			
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277		
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138		
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138		
kVA BASE RATING FOR REACTANCE	450	450	450	450	525	550	581	594		
Xd DIR. AXIS SYNCHRONOUS	3.27	2.95	2.74	2.44	3.94	3.69	3.57	3.35		
X'd DIR. AXIS TRANSIENT	0.18	0.16	0.15	0.13	0.18	0.17	0.16	0.15		
X"d DIR. AXIS SUBTRANSIENT	0.13	0.12	0.11	0.10	0.13	0.12	0.12	0.11		
Xq QUAD. AXIS REACTANCE	2.66	2.40	2.23	1.98	3.12	2.92	2.82	2.65		
X"q QUAD. AXIS SUBTRANSIENT	0.26	0.24	0.22	0.20	0.34	0.32	0.31	0.29		
XL LEAKAGE REACTANCE	0.07	0.06	0.06	0.05	0.08	0.07	0.07	0.07		
X2 NEGATIVE SEQUENCE	0.19	0.17	0.16	0.14	0.23	0.22	0.21	0.20		
X0ZERO SEQUENCE	0.11	0.10	0.09	0.08	0.11	0.10	0.10	0.09		
REACTANCES ARE SATURAT	TED	١	ALUES ARE			ND VOLTAGE	E INDICATED)		
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.	0.08s									
	0.012s 2s									
LEGO () C FIFLD LIME CONST	0.017s									
T'do O.C. FIELD TIME CONST. Ta ARMATURE TIME CONST.					-					

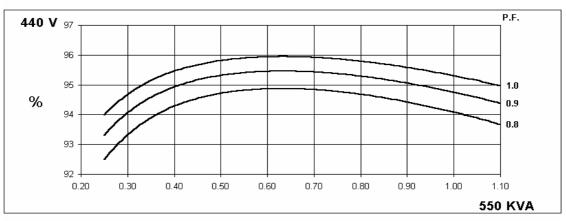

50 Hz

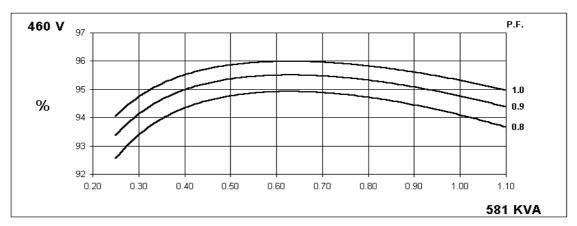


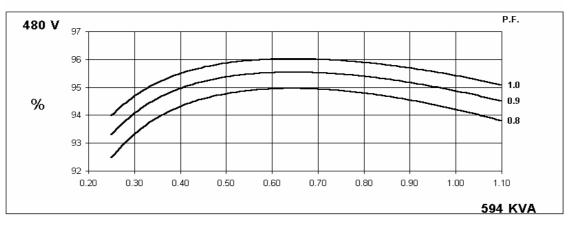

Winding 311

THREE PHASE EFFICIENCY CURVES



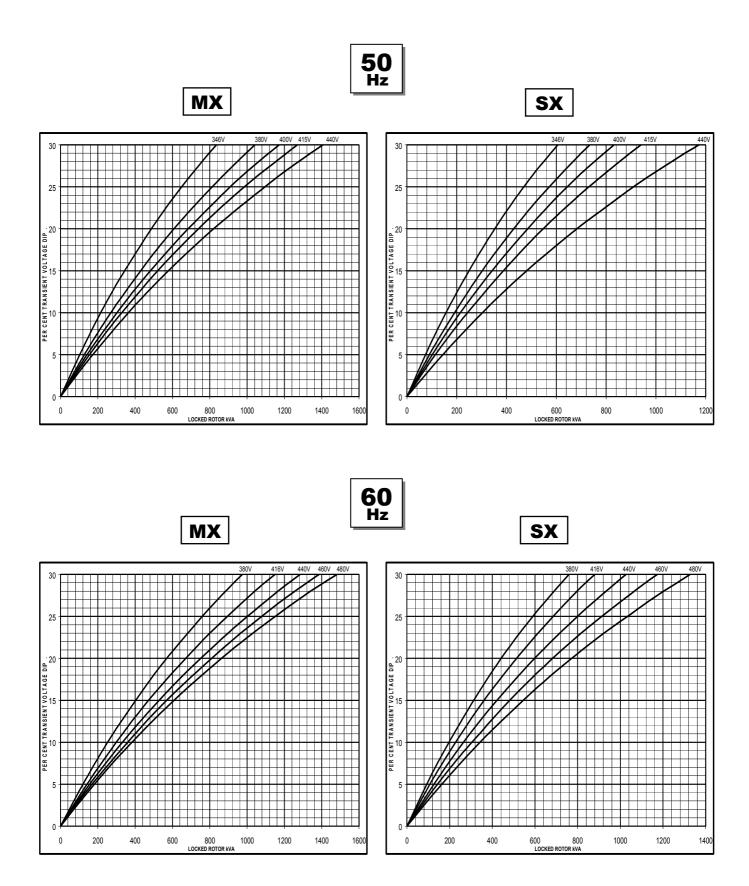

5

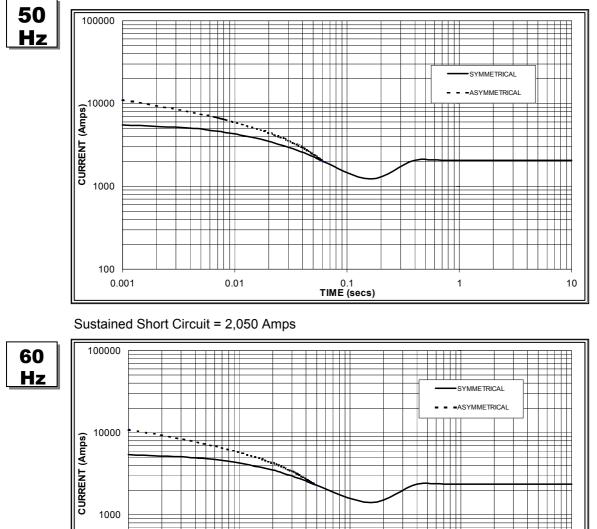

60


Hz

THREE PHASE EFFICIENCY CURVES

HCI534C/544C


Winding 311


Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 2,350 Amps

0.01

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

100

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	X 1.00			
400v	X 1.03	440v	X 1.06			
415v	X 1.05	460v	X 1.12			
440v	X 1.07	480v	X 1.20			

The sustained current value is constant irrespective of voltage level

Note 2

0.1

TIME (secs)

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

1

10

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

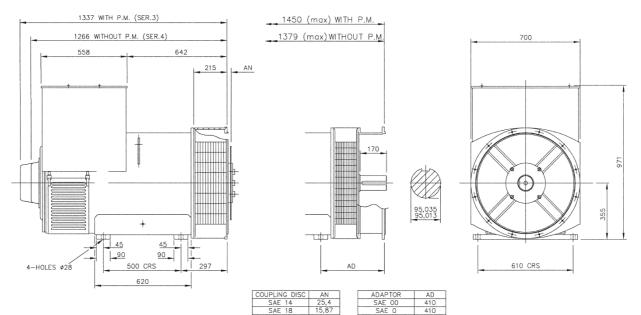
All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732



Winding 311 0.8 Power Factor

RATINGS

	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	Sta	andby -	163/27	′°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	400	445	400	400	450	500	450	450	478	512	478	478	495	520	495	495
	kW	320	356	320	320	360	400	360	360	382	410	382	382	396	416	396	396
	Efficiency (%)	94.5	94.3	94.8	94.9	94.0	93.8	94.4	94.6	93.8	93.7	94.2	94.4	93.6	93.6	94.1	94.3
	kW Input	339	378	338	337	383	426	381	381	408	437	406	405	423	444	421	420
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	481	500	531	538	525	550	581	594	550	581	613	625	569	600	631	644
	kW	385	400	425	430	420	440	465	475	440	465	490	500	455	480	505	515
	Efficiency (%)	94.3	94.4	94.4	94.5	94.0	94.1	94.1	94.2	93.8	93.9	93.9	94.0	93.6	93.7	93.7	93.9
	kW Input	408	424	450	455	447	468	494	504	469	495	522	532	486	512	539	549

DIMENSIONS

PO Box 17 • Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

QSX15-G6

Emissions Compliance:

Non-Certified or "Flex" program for EU Mobile applications. Formerly EU Stage2 @ 50Hz.

> Specification sheet

Our energy working for you.™

Description

The QSX15-Series is the first heavy-duty diesel with 24valve dual overhead camshaft technology. Yet it has an impressive 30% fewer parts than comparable diesels and a utilised design, which eliminates external lube, coolant and fuel lines, leading to higher reliability for such a high power output.

The 15 litre, six-cylinder QSX15 engine is ideally suited to both open and containerised applications in static or portable genset equipment. It can be matched to meet specific duty cycle and operating conditions of any genset.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

Holset HX82 Turbocharging - Wastegated design optimizes operation across the torque curve with improved response.

Integrated Block Design - Integrated fluid circuits replace hoses and eliminate potential leaks.

High-Pressure Fuel Injection - Capable of over 1,900 bar (28,000 psi) for cleaner, more fuel-efficient combustion.

24-Valve Cylinder Head – Four valves per cylinder for increased power with faster response at every rpm.

Coolpac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gross Engine Output Net Engine Output			Typical Generator Set Output								
Standby	Prime	Base	Standby	Prime	Base	Standby (ESP)		y (ESP) Prime (PRP)		Base (COP)	
	kWm/BHP kWm/BHP			kWe	kVA	kWe	kVA	kWe	kVA		
459/616	414/555	291/390	436/584	396/531	273/366	400	500	364	455	256	320

1800 rpm (60 Hz Ratings)

Gross Engine Output Net Engine Output			Typical Generator Set Output								
Standby	Prime	Base	Standby	Prime	Base	Standby (ESP)		(ESP) Prime (PRP)		Base (COP)	
kWm/BHP kWm		kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA		
455/610	414/555	295/396	419/561	383/513	264/354	400	500	360	450	245	307

General Engine Data

Туре	4 Cycle, In-line, Turbo Charged, Air Cooled
Bore mm	137 mm (5.39 in.)
Stroke mm	169 mm (6.65 in.)
Displacement Litre	15 litre (912 in.3)
Cylinder Block	Cast iron, 6 cylinder
Battery Charging Alternator	35 amps
Starting Voltage	24 volt
Fuel System	Direct injection
Fuel Filter	Spin-on fuel filters with water separator
Lube Oil Filter Type(s)	Spin-on full flow filter
Lube Oil Capacity (I)	91.0
Flywheel Dimensions	SAE1

Coolpac Performance Data

Cooling System Design	Air-Air Charge Cooled
Coolant Ratio	50% ethylene glycol; 50% water
Coolant Capacity (I)	42.0
Limiting Ambient Temp.** (°C)	55
Fan Power (kWm)	16
Cooling System Air Flow (m ³ /s)**	11.8
Air Cleaner Type	Light duty dry replaceable element with restriction indicator

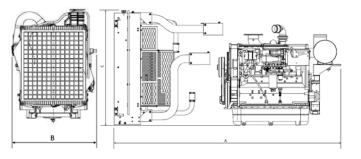
** @ 13 mm H²0 Duct Restriction

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):


Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

BHP

610

555

416

278

139

396

Fuel Consumption 1800 (60 Hz)

kWm

455

414

311

207

104

295

%

100 **Prime Power** 100

75

50

25

Continuous Power 100

Standby Power

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
2269	1332	1669	1658

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph					
Standby Power									
100	459	615	108.0	28.4					
Prime Powe	Prime Power								
100	414	555	95.9	25.3					
75	311	416	74.3	19.6					
50	207	278	51.3	13.6					
25	104	139	29.1	7.7					
Continuous	Continuous Power								
100	291	395	71.0	18.7					

Cummins G-Drive Engines

Asia Pacific

(03/11)

10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF, UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

North America 1400 73rd Avenue N.E.

L/ph

107.0

97.6

75.2

53.4

31.8

72.7

Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

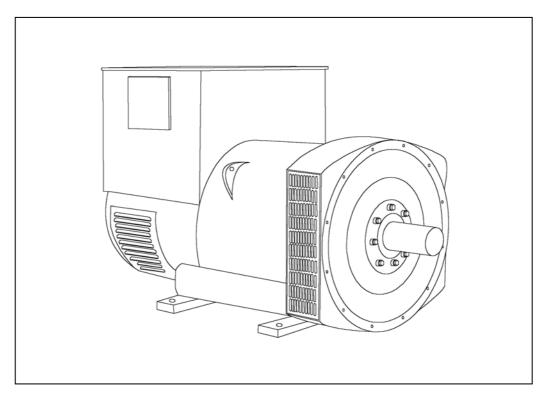
©2011 | Cummins G-Drive Engines | Specifications Subject to Change Without Notice | Cummins is a registered trademark of Cummins Inc.

US gal/ph

28.4

25.8

19.9


14.1

8.4

19.1

HCI 534C/544C - Technical Data Sheet

SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The SX440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

If 3-phase sensing is required with the self-excited system, the SX421 AVR must be used.

SX421 AVR

This AVR also operates in a self-excited system. It combines all the features of the SX440 with, additionally, three-phase rms sensing for improved regulation and performance. Over voltage protection is provided via a separate circuit breaker. An engine relief load acceptance feature is built in as standard.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

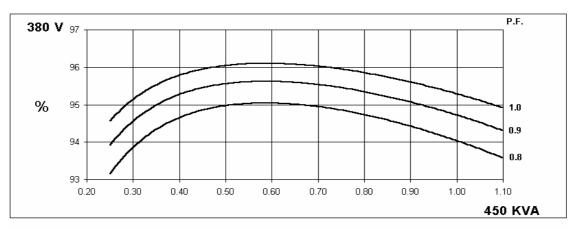
Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

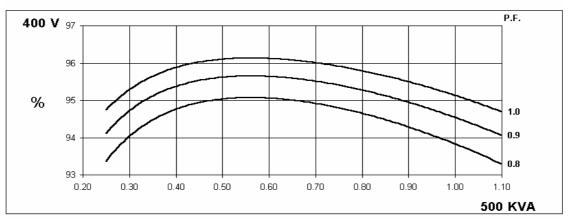
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

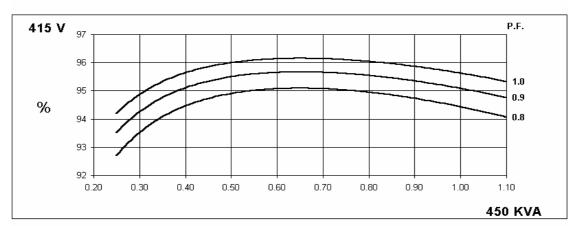
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

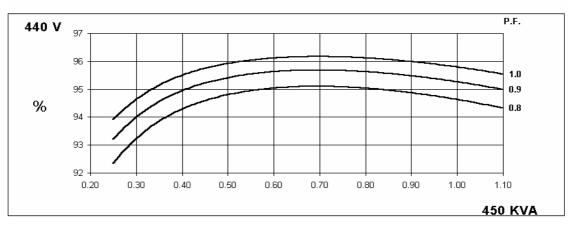
Front cover drawing typical of product range.

WINDING 311

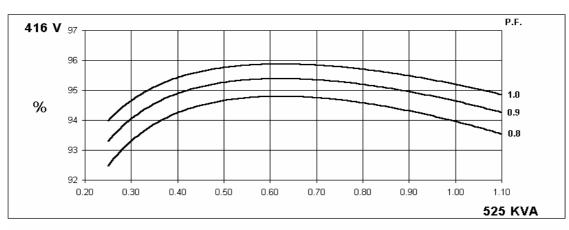

CONTROL SYSTEM	SEPARATEI	Y EXCITED	BYPMG							
A.V.R.	MX321	MX341	DTT.W.O.							
VOLTAGE REGULATION		± 1.0 %								
	± 0.5 %	± 0.5 % ± 1.0 % With 4% ENGINE GOVERNING REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)								
SUSTAINED SHORT CIRCUIT	REFER TO S									
CONTROL SYSTEM	SELF EXCIT	SELF EXCITED								
A.V.R.	SX440	SX421								
VOLTAGE REGULATION	± 1.0 %	± 0.5 %	With 4% EN	GINE GOVER	RNING					
SUSTAINED SHORT CIRCUIT	SERIES 4 C	ONTROL DO	ES NOT SUS	TAIN A SHO	RT CIRCUIT	CURRENT				
INSULATION SYSTEM				CLAS	SS H					
PROTECTION				IP	23					
RATED POWER FACTOR				0.	8					
STATOR WINDING				DOUBLE L	AYER LAP					
WINDING PITCH				TWO T						
WINDING LEADS				1						
STATOR WDG. RESISTANCE		0.0065	Ohms PER P	HASE AT 22	°C SERIES S	STAR CONNE	ECTED			
ROTOR WDG. RESISTANCE				1.55 Ohm	s at 22°C					
R.F.I. SUPPRESSION	BS EI	N 61000-6-2	& BS EN 610	00-6-4,VDE 0	875G, VDE 0	875N. refer to	o factory for o	thers		
WAVEFORM DISTORTION		NO LOAD	< 1.5% NON-	DISTORTIN	G BALANCED	LINEAR LO	AD < 5.0%			
MAXIMUM OVERSPEED				2250 R	ev/Min					
BEARING DRIVE END				BALL. 62	20 (ISO)					
BEARING NON-DRIVE END				BALL. 63	14 (ISO)					
		1 BE/	ARING			2 BEA	RING			
WEIGHT COMP. GENERATOR		126	i3 kg			1275	5 kg			
WEIGHT WOUND STATOR		584	4 kg		584 kg					
WEIGHT WOUND ROTOR		502	2 kg		473 kg					
WR ² INERTIA		6.892	8 kgm ²		6.6149 kgm ²					
SHIPPING WEIGHTS in a crate			i5 kg				1395 kg			
PACKING CRATE SIZE			x 124(cm)			166 x 87 x				
			Hz			60				
			<2%		TIF<50 1.312 m³/sec 2780 cfm					
	200/000		ec 2202 cfm	440/054	440/040	1		400/077		
VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR	380/220 190/110	200/115	415/240	440/254	416/240	220/127	460/266	480/277 240/138		
VOLTAGE FARALLEL STAR	220/110	230/115	208/120 240/120	220/127 254/127	208/120 240/120	254/127	230/133 266/133	277/138		
KVA BASE RATING FOR REACTANCE	450	450	450	450	525	550	581	594		
VALUES Xd DIR. AXIS SYNCHRONOUS	3.27	2.95	2.74	2.44	3.94	3.69	3.57	3.35		
X'd DIR. AXIS TRANSIENT	0.18	0.16	0.15	0.13	0.18	0.17	0.16	0.15		
X"d DIR. AXIS SUBTRANSIENT	0.13	0.10	0.10	0.10	0.10	0.12	0.12	0.10		
Xg QUAD. AXIS REACTANCE	2.66	2.40	2.23	1.98	3.12	2.92	2.82	2.65		
X"g QUAD. AXIS SUBTRANSIENT	0.26	0.24	0.22	0.20	0.34	0.32	0.31	0.29		
XL LEAKAGE REACTANCE	0.07	0.06	0.06	0.05	0.08	0.07	0.07	0.07		
X2 NEGATIVE SEQUENCE	0.19	0.17	0.16	0.14	0.23	0.22	0.21	0.20		
X0ZERO SEQUENCE	0.11	0.10	0.09	0.08	0.11	0.10	0.10	0.09		
REACTANCES ARE SATURAT	ED	١	ALUES ARE	PER UNIT A	T RATING A	ND VOLTAGE	INDICATED)		
T'd TRANSIENT TIME CONST.				0.0	8s					
T"d SUB-TRANSTIME CONST.				0.0						
				2	-					
Ta ARMATURE TIME CONST. SHORT CIRCUIT RATIO				0.0 ⁻						
				1/7	.					

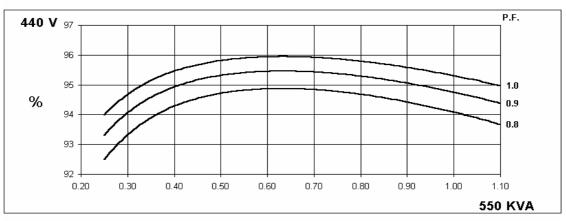

50 Hz

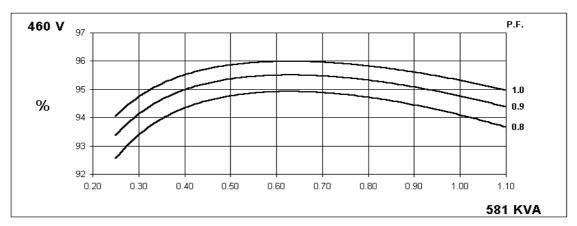


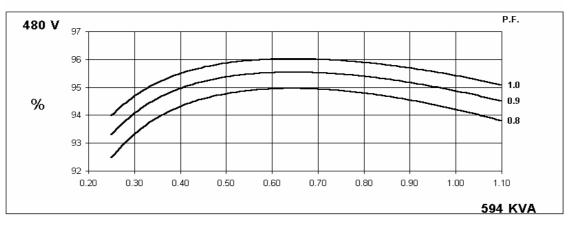

Winding 311

THREE PHASE EFFICIENCY CURVES




5

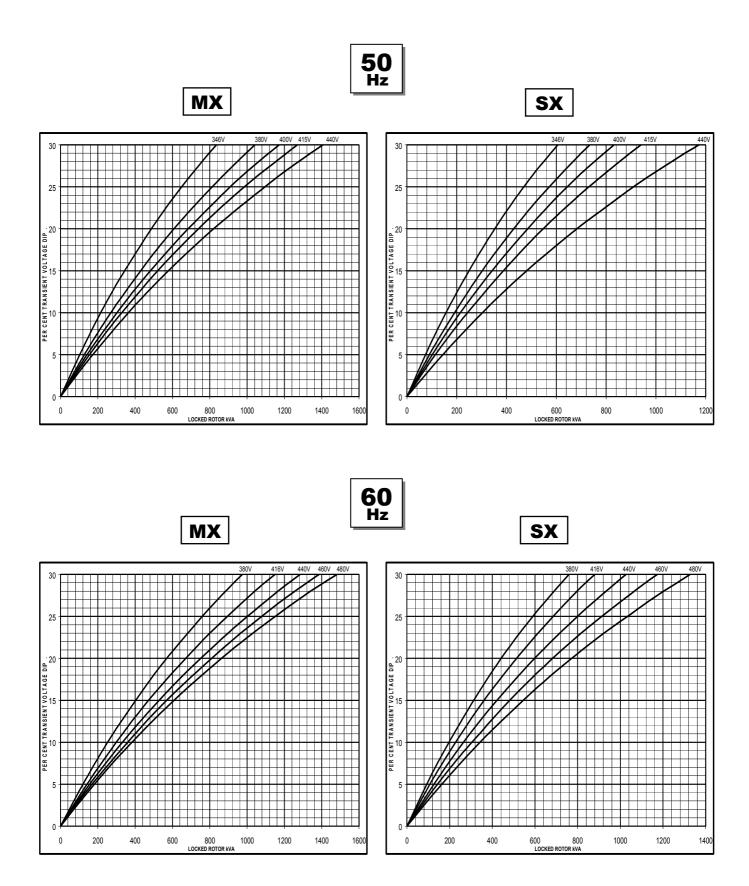

60


Hz

THREE PHASE EFFICIENCY CURVES

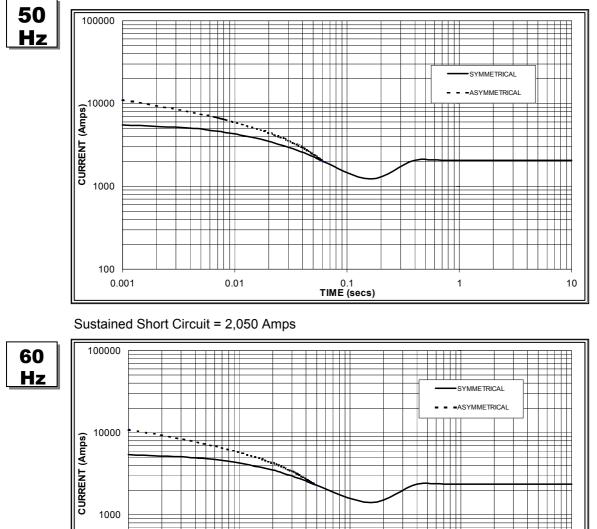
HCI534C/544C

Winding 311



HCI534C/544C

Winding 311


Locked Rotor Motor Starting Curve

HCI534C/544C

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 2,350 Amps

0.01

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

100

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	X 1.00			
400v	X 1.03	440v	X 1.06			
415v	X 1.05	460v	X 1.12			
440v	X 1.07	480v	X 1.20			

The sustained current value is constant irrespective of voltage level

Note 2

0.1

TIME (secs)

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

1

10

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

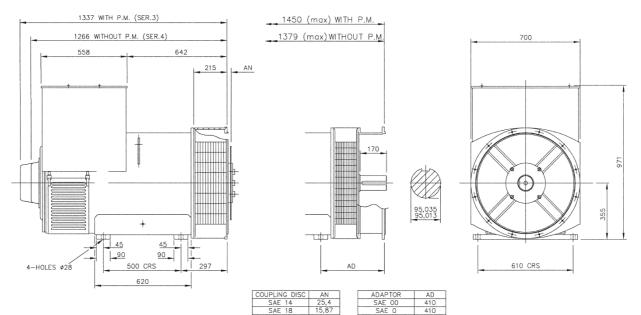
Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

HCI534C/544C



Winding 311 0.8 Power Factor

RATINGS

	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	Sta	andby -	163/27	′°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	400	445	400	400	450	500	450	450	478	512	478	478	495	520	495	495
	kW	320	356	320	320	360	400	360	360	382	410	382	382	396	416	396	396
	Efficiency (%)	94.5	94.3	94.8	94.9	94.0	93.8	94.4	94.6	93.8	93.7	94.2	94.4	93.6	93.6	94.1	94.3
	kW Input	339	378	338	337	383	426	381	381	408	437	406	405	423	444	421	420
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	481	500	531	538	525	550	581	594	550	581	613	625	569	600	631	644
	kW	385	400	425	430	420	440	465	475	440	465	490	500	455	480	505	515
	Efficiency (%)	94.3	94.4	94.4	94.5	94.0	94.1	94.1	94.2	93.8	93.9	93.9	94.0	93.6	93.7	93.7	93.9
	kW Input	408	424	450	455	447	468	494	504	469	495	522	532	486	512	539	549

DIMENSIONS

PO Box 17 • Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

QSX15-G4

Emissions Compliance:

Non-Certified or "Flex" program for EU Mobile applications. Formerly EU Stage2 @ 50Hz.

> Specification sheet

Description

power output.

genset.

ISO 9001

Our energy working for you.™

The QSX15-Series is the first heavy-duty diesel with 24-

valve dual overhead camshaft technology. Yet it has an

and fuel lines leading to higher reliability for such a high

The 15 litre, six-cylinder QSX15 engine is ideally suited to both open and containerised applications in static or portable genset equipment. It can be matched to meet

This engine has been built to comply

This engine has been designed in facilities certified to ISO9001 and

manufactured in facilities certified to

specific duty cycle and operating conditions of any

with CE certification.

ISO9001 or ISO9002.

impressive 30% fewer parts than comparable diesels and a utilised design, which eliminates external lube, coolant

Features

Holset HX82 Turbocharging - Wastegated design optimizes operation across the torque curve with improved response.

Integrated Block Design - Integrated fluid circuits replace hoses and eliminate potential leaks.

High-Pressure Fuel Injection - Capable of over 1,900 bar (28,000 psi) for cleaner, more fuel-efficient combustion.

24-Valve Cylinder Head – Four valves per cylinder for increased power with faster response at every rpm.

Coolpac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gross Engine Output Net Engine Output			Typical Generator Set Output								
Standby	Prime	Base	Standby	Prime	Base	Standby	(ESP)	Prime	e (PRP)	Base (COP)	
	kWm/BHP kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA			
407/545	366/490	257/345	385/516	348/466	239/320	360	450	327	409	224	280

1800 rpm (60 Hz Ratings)

Gros	Gross Engine Output Net Engine Output				Typical Generator Set Output						
Standby	Prime	Base	Standby	Prime	Base	Standby	(ESP)	Prime	e (PRP)	Base	(COP)
	kWm/BHP			kWm/BHP		kWe	kWe kVA		kVA	kWe	kVA
455/610	414/555	295/395	419/561	383/514	264/354	400	500	355	445	245	305

General Engine Data

Туре	4 Cycle, In-line, Turbo Charged, Air Cooled
Bore mm	137 mm (5.39 in.)
Stroke mm	169 mm (6.65 in.)
Displacement Litre	15 litre (912 in. ³)
Cylinder Block	Cast iron, 6 cylinder
Battery Charging Alternator	35 amps
Starting Voltage	24 volt
Fuel System	Direct injection
Fuel Filter	Spin-on fuel filters with water separator
Lube Oil Filter Type(s)	Spin-on full flow filter
Lube Oil Capacity (I)	91.0
Flywheel Dimensions	SAE1

Coolpac Performance Data

Cooling System Design	Air-Air Charge Cooled				
Coolant Ratio	50% ethylene glycol; 50% water				
Coolant Capacity (I)	42.0				
Limiting Ambient Temp.** (°C)	55				
Fan Power (kWm)	16				
Cooling System Air Flow (m ³ /s)**	11.8				
Air Cleaner Type	Light duty dry replaceable element with restriction indicator				

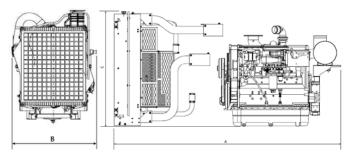
** @ 13 mm H²0 duct Restriction

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):


Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

BHP

610

555

416

278

139

395

Fuel Consumption 1800 (60 Hz)

kWm

455

414

311

207

104

295

%

100

100

75

50

25

Continuous Power 100

Prime Power

Standby Power

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
2269	1332	1669	1658

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph						
Standby Po	Standby Power									
100	407	545	94.1	24.9						
Prime Powe	Prime Power									
100	366	490	85.7	22.6						
75	275	368	67	17.7						
50	183	245	45.7	12.1						
25	92	123	26.6	7						
Continuous Power										
100	257	345	63.6	16.8						

Cummins G-Drive Engines

Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900

Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

North America

L/ph

107.3

97.6

75.2

53.4

31.8

72.2

US gal/ph

28.4

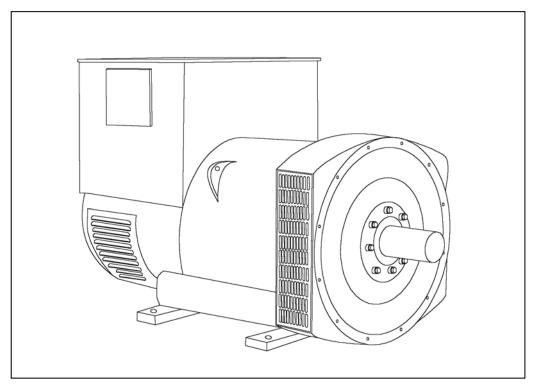
25.8

19.9

14.1

8.4

19.1


1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

HCI 434F/444F - Technical Data Sheet

HCI434F/444F SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

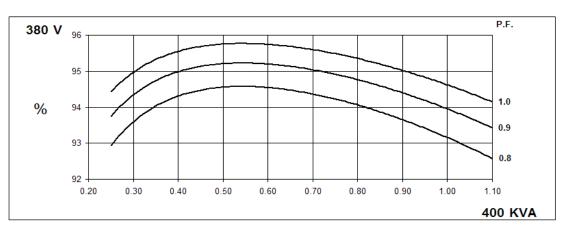
Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

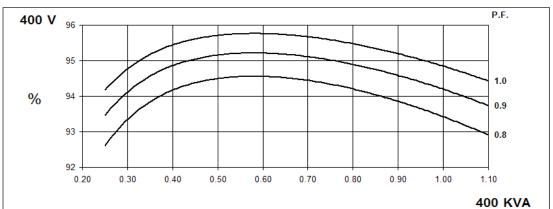
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

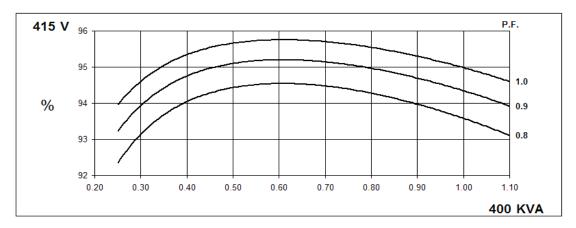
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

Front cover drawing typical of product range.

WINDING 311

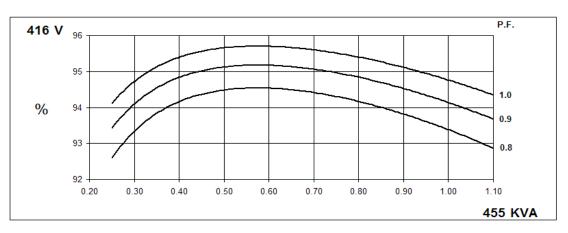

CONTROL SYSTEM SEPARATELY EXCITED BY P.M.G.								
A.V.R.	MX321	MX341						
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	\//ith 4% EN					
SUSTAINED SHORT CIRCUIT		± 0.5 % ± 1.0 % With 4% ENGINE GOVERNING REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)						
					ΟΚΥΕΟ (μαί	je /)		
CONTROL SYSTEM	SELF EXC	ITED						
A.V.R.	AS440	AS440						
VOLTAGE REGULATION	± 1.0 %	± 1.0 % With 4% ENGINE GOVERNING						
SUSTAINED SHORT CIRCUIT	WILL NOT	WILL NOT SUSTAIN A SHORT CIRCUIT						
INSULATION SYSTEM				CLA	SS H			
PROTECTION				IP	23			
RATED POWER FACTOR				0	.8			
STATOR WINDING				DOUBLE L	AYER LAP			
				TWO 1	HIRDS			
WINDING LEADS					2			
STATOR WDG. RESISTANCE		0.0073.01	hms PER PH			STARCON		
		0.0073 01		1.37 Ohm				
ROTOR WDG. RESISTANCE				1.37 Onn 18 Ohms				
EXCITER STATOR RESISTANCE								
EXCITER ROTOR RESISTANCE					PHASE AT			
R.F.I. SUPPRESSION		1000-6-2 &						
WAVEFORM DISTORTION	NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%							
MAXIMUM OVERSPEED	2250 Rev/Min							
BEARING DRIVE END				BALL. 63	317 (ISO)			
BEARING NON-DRIVE END				BALL. 63	314 (ISO)			
			ARING				ARING	
WEIGHT COMP. GENERATOR			0 kg				0 kg	
WEIGHT WOUND STATOR			5 kg				5 kg	
WEIGHT WOUND ROTOR			3 kg 2 kgm ²				$\frac{1}{4}$ kg	
SHIPPING WEIGHTS in a crate			2 kgm 0 kg				4 kgm² 0 kg	
PACKING CRATE SIZE			x 107(cm)				x 107(cm)	
			Hz				Hz	
TELEPHONE INTERFERENCE		THF	<2%			TIF	<50	
COOLING AIR		0.8 m ³ /sec	: 1700 cfm			0.99 m ³ /se	c 2100 cfm	-
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138
VOLTAGE SERIES DELTA kVA BASE RATING FOR	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138
REACTANCE VALUES	400	400	400	400	455	480	500	500
Xd DIR. AXIS SYNCHRONOUS	2.72	2.45	2.28	2.03	3.28	3.09	2.95	2.71
X'd DIR. AXIS TRANSIENT	0.18	0.16	0.15	0.13	0.18	0.17	0.16	0.15
X"d DIR. AXIS SUBTRANSIENT	0.13	0.12	0.11	0.10	0.13	0.12	0.12	0.11
Xq QUAD. AXIS REACTANCE	2.35	2.12	1.97	1.75	2.90	2.73	2.61	2.39
X"q QUAD. AXIS SUBTRANSIENT	0.31	0.28	0.26	0.23	0.43	0.41	0.39	0.35
XL LEAKAGE REACTANCE	0.06	0.05	0.05	0.04	0.07	0.07	0.06	0.06
X2 NEGATIVE SEQUENCE	0.23	0.20	0.19	0.17	0.29	0.27	0.26	0.24
X0ZERO SEQUENCE	0.08	0.08			0.10 T PATING /			0.08
REACTANCES ARE SATURA T'd TRANSIENT TIME CONST.		VAL	LUES ARE F		TRATING A 08s	VOLTA		IEU
T''d SUB-TRANSTIME CONST.					19s			
T'do O.C. FIELD TIME CONST.				1.	7s			
Ta ARMATURE TIME CONST.					18s			
SHORT CIRCUIT RATIO				1/	Xd			

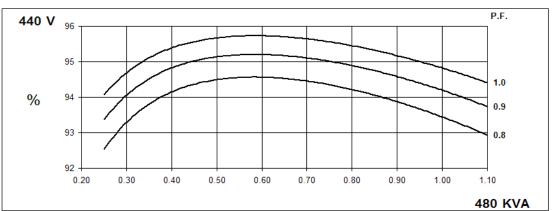

50

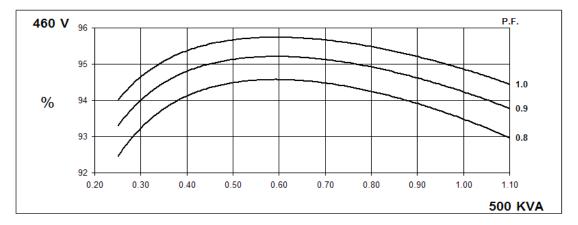

Hz

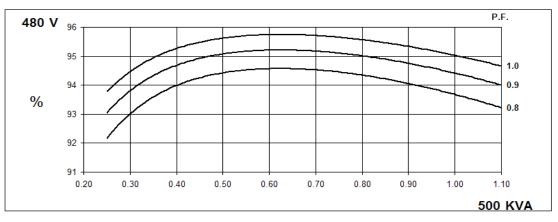
Winding 311

THREE PHASE EFFICIENCY CURVES

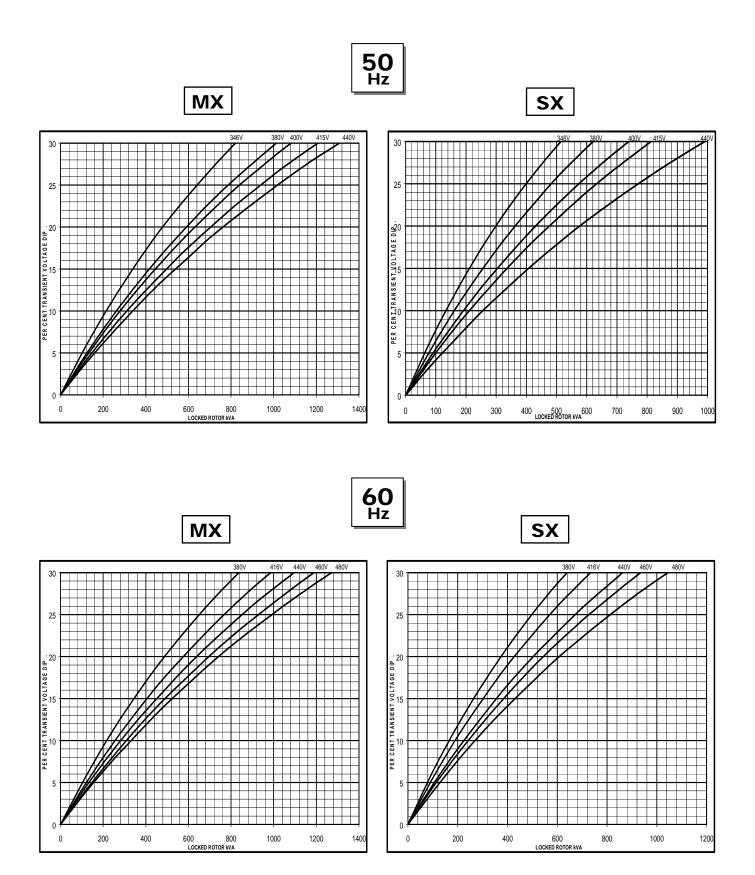



60

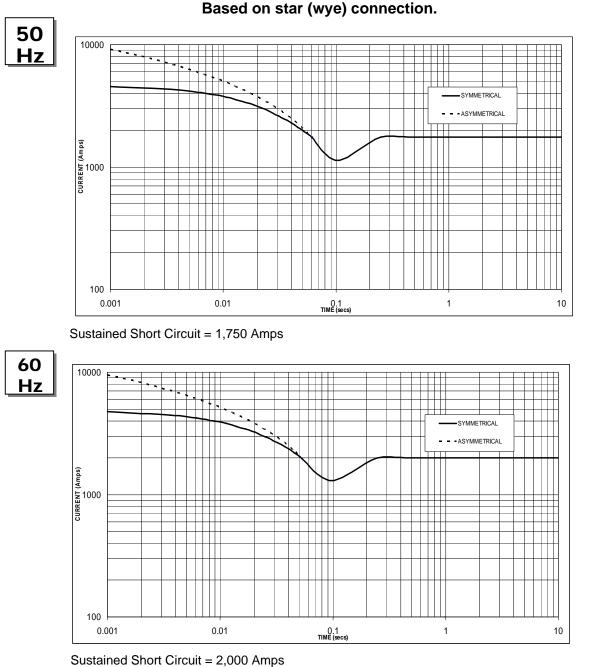

Hz


Winding 311

THREE PHASE EFFICIENCY CURVES



5


Winding 311

Locked Rotor Motor Starting Curve

HCI434F

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz			
Voltage	Factor	Voltage	Factor		
380v	X 1.00	416v	X 1.00		
400v	X 1.05	440v	X 1.06		
415v	X 1.09	460v	X 1.10		
440v	X 1.16	480v	X 1.15		

The sustained current value is constant irrespective of voltage level

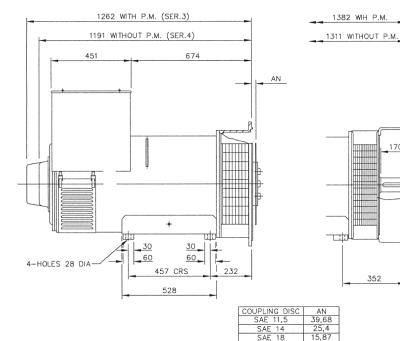
Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.
All other tir	mas ara uncha	ngod	•

Note 3 All other times are unchanged

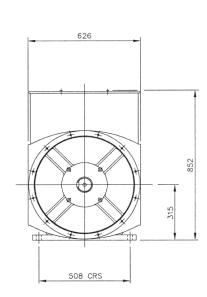
Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :


Parallel Star = Curve current value X 2

Winding 311 / 0.8 Power Factor

RATINGS

	Class - Temp Rise	Co	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	′°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
Hz	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	370	370	370	370	400	400	400	400	415	430	430	430	425	450	440	440
	kW	296	296	296	296	320	320	320	320	332	344	344	344	340	360	352	352
	Efficiency (%)	93.5	93.8	93.9	94.0	93.2	93.4	93.6	93.8	92.9	93.0	93.2	93.5	92.8	92.8	93.1	93.4
	kW Input	317	316	315	315	343	343	342	341	357	370	369	368	366	388	378	377
														1			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	420	445	465	465	455	480	500	500	485	515	535	535	500	530	550	550
	kW	336	356	372	372	364	384	400	400	388	412	428	428	400	424	440	440
	Efficiency (%)	93.7	93.8	93.8	94.0	93.4	93.4	93.5	93.7	93.1	93.1	93.1	93.4	92.9	92.9	93.0	93.2
	kW Input	359	380	397	396	390	411	428	427	417	443	460	458	431	456	473	472



DIMENSIONS

170


352

30,030 80,011

STAMFORD Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

QST30-G4

> Specification sheet

Our energy working for you.™

Description

The QST30 Quantum series utilizes sophisticated electronics and premium engineering to provide outstanding performance levels from its compact 30 liter, V12 configuration.

In fact, the QST30-Series delivers more power and torque in a smaller package than any other diesel engine on the market.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

Quantum electronic fuel systems and controls provide superior performance, efficiency and diagnostics. The electronic fuel pumps deliver up to 1100 bar injection pressure and eliminate mechanical linkage adjustments. Electronic control module with PGI (Power Generation Interface) provides full authority electronic control over fuel management, G-drive features, protection and diagnostics.

CTT (Cummins Turbo Technologies) HX82 turbo charging utilises exhaust energy with greater efficiency for improved emissions and fuel consumption.

Coolpac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gros	ss Engine Ou	utput	Net	Engine Out	Typical Generator Set Output							
Standby Prime Base			Standby	Prime	Base	Standby	(ESP)	Prime	e (PRP)	Base (COP)		
kWm/BHP				kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA	
970/1300 880/1180 683/915 943/1264 853/1143 656/879				880	1100	800	1000	683	791			

1800 rpm (60 Hz Ratings)

Gros	ss Engine O	utput	Net	Engine Out	put	Typical Generator Set Output							
Standby Prime Base Standby Prime Base				Standby	(ESP)	Base (COP)							
	kWm/BHP			kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA		
1112/1490	1007/1350	832/1115	1070/1434	070/1434 965/1294 790/1059			1265	920	1150	752	940		

General Engine Data

Туре	4 cycle, in line, Turbocharged ,Air Cooled
Bore mm	140.0
Stroke mm	165.1
Displacement Litre	30.5
Cylinder Block	Cast iron, 50°V 12 cylinder
Battery Charging Alternator	35A
Starting Voltage	24V
Fuel System	Direct injection
Fuel Filter	Spin on fuel filters with water separator
Lube Oil Filter Type(s)	Spin on full flow filter
Lube Oil Capacity (I)	154
Flywheel Dimensions	SAE 0

CoolPac Performance Data

Cooling System Design	Air to Air Charge Cooled						
Coolant Ratio	50% ethylene glycol; 50% water						
Total Coolant Capacity (I)	192						
Limiting Ambient Temp. (°C)**	52 (50Hz)	52.3 (60Hz)					
Fan Power (kWm)	27 (50Hz)	42 (60Hz)					
Cooling System Air Flow (m ³ /s)**	12.6 (50Hz) 17.07 (60Hz)						
Air Cleaner Type	"Normal Duty" dry replaceable element with restriction indicator						

** @ 13 mm H₂0

CoolPac Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
3008	1429	2275	3662

Fuel Consumption 1500 rpm (50 Hz)

%	kWm	BHP	L/ph	US gal/ph							
Standby Po	ower										
100	970	1300	224	59.1							
Prime Power											
100	880	1180	202	53.2							
75	660	885	151	39.8							
50	440	590	102	26.9							
25	220	295	54	14.2							
Continuous	s Power										
100	683	915	156	41.1							

Cummins G-Drive Engines

Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Mexico Mexico

Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Phone 52 444 870 6700 Fax 52 444 870 6811

North America

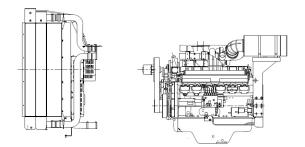
1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):


Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.


Fuel Consumption 1800 rpm (60 Hz)

%	kWm	BHP	L/ph	US gal/ph									
Standby Po	ower												
100	1112	1490	267	70.5									
Prime Power													
100	1007	1350	240	63.3									
75	756	1013	177	46.7									
50	504	675	119	31.5									
25	252	338	66	17.4									
Continuous	Continuous Power												
100	832	1115	194	51.4									

HCI634J - Technical Data Sheet

SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

MX321 AVR - STANDARD

This sophisticated Automatic Voltage Regulator (AVR) is incorporated into the Stamford Permanent Magnet Generator (PMG) system and is fitted as standard to generators of this type.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

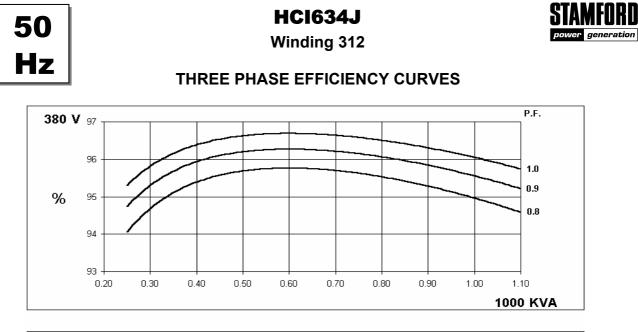
All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

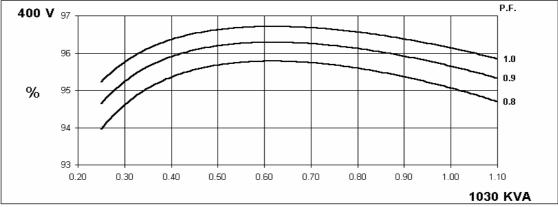
Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

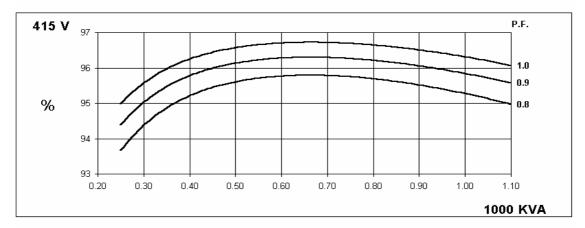
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

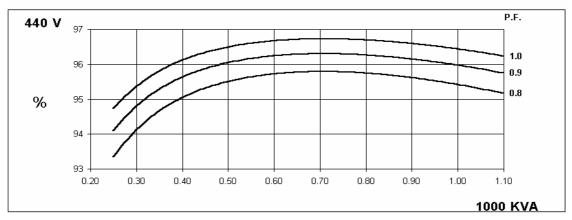
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.


Front cover drawing typical of product range.

STAMFORD

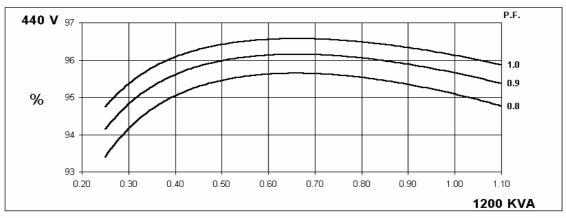

HCI634J

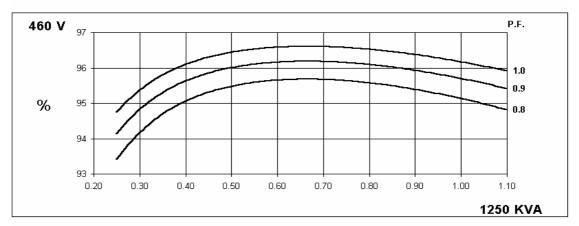

WINDING 312

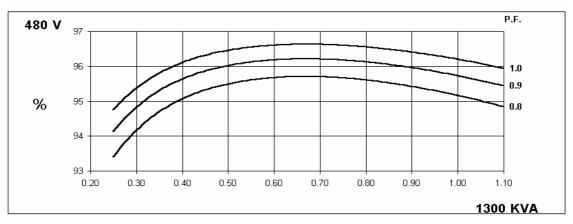

CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.								
A.V.R.	MX321										
VOLTAGE REGULATION	± 0.5 %	With 4% EN	GINE GOVER	RNING							
SUSTAINED SHORT CIRCUIT		SHORT CIRC		-	ES (page 7)						
INSULATION SYSTEM				CLAS	SS H						
PROTECTION				IP2	23						
RATED POWER FACTOR				0.	8						
STATOR WINDING				DOUBLE L	AYER LAP						
WINDING PITCH				TWO T	HIRDS						
WINDING LEADS				6	;						
STATOR WDG. RESISTANCE		0.0	002 Ohms PE	R PHASE AT	22°C STAR	CONNECTE	D				
ROTOR WDG. RESISTANCE				2.09 Ohm	s at 22°C						
R.F.I. SUPPRESSION	BS E	N 61000-6-2 8	& BS EN 610	00-6-4,VDE 0	875G, VDE 0	875N. refer to	o factory for o	others			
WAVEFORM DISTORTION					G BALANCED						
MAXIMUM OVERSPEED				2250 R							
BEARING DRIVE END				BALL. 62	-						
BEARING NON-DRIVE END				BALL. 63	()						
BEARING NON-DRIVE END		4.05/		DALL. 03	17 (130)		2 BEARING				
WEIGHT COMP. GENERATOR			9 kg			2300	•				
WEIGHT WOUND STATOR			0 kg			1120	•				
WEIGHT WOUND ROTOR			2 kg			916	•				
WR ² INERTIA			37 kgm ²			22.3814					
SHIPPING WEIGHTS in a crate		232	28kg		2329kg						
PACKING CRATE SIZE		183 x 92 x	x 140(cm)		183 x 92 x 140(cm)						
		50	Hz		60 Hz						
TELEPHONE INTERFERENCE		THF	<2%		TIF<50						
COOLING AIR		1.614 m³/se	ec 3420 cfm			1.961 m ³ /se	c 4156 cfm				
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277			
VOLTAGE DELTA	220	230	240	254	240	254	266	277			
kVA BASE RATING FOR REACTANCE VALUES	1000	1000	1000	1000	1150	1200	1250	1300			
Xd DIR. AXIS SYNCHRONOUS	3.02	2.73	2.54	2.26	3.49	3.25	3.10	2.96			
X'd DIR. AXIS TRANSIENT	0.24	0.22	0.20	0.18	0.28	0.26	0.25	0.24			
X"d DIR. AXIS SUBTRANSIENT	0.17	0.15	0.14	0.12	0.19	0.18	0.17	0.16			
Xq QUAD. AXIS REACTANCE	1.78	1.61	1.50	1.33	2.05	1.91	1.82	1.74			
X"q QUAD. AXIS SUBTRANSIENT	0.21	0.19	0.18	0.16	0.25	0.23	0.22	0.21			
XL LEAKAGE REACTANCE X2 NEGATIVE SEQUENCE	0.09	0.08	0.08	0.07	0.10	0.10	0.09	0.09			
X0 ZERO SEQUENCE								0.21			
REACTANCES ARE SATURA					T RATING AN	0.03 ND VOLTAGE	0.03 E INDICATED	1			
T'd TRANSIENT TIME CONST.				0.1							
T"d SUB-TRANSTIME CONST.	0.025										
T'do O.C. FIELD TIME CONST.	3.03										
Ta ARMATURE TIME CONST.				0.0							
SHORT CIRCUIT RATIO				1/)	٢d						

RN

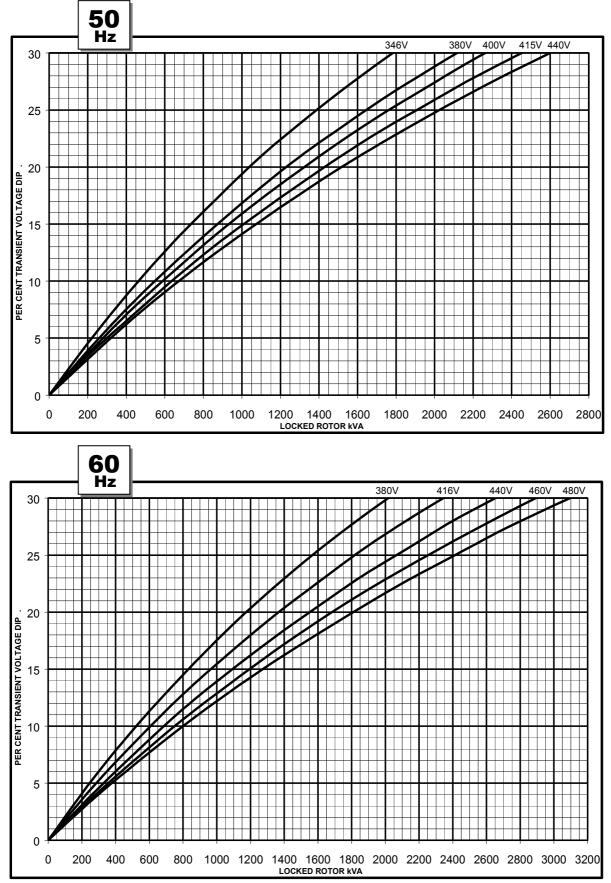


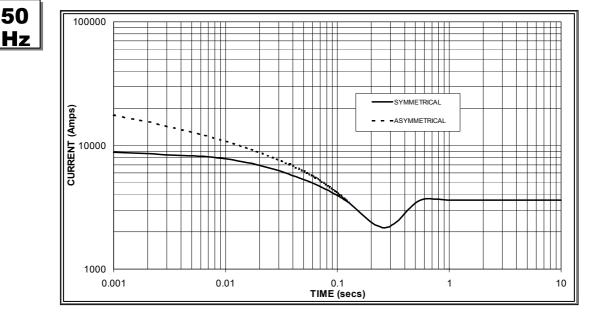



Winding 312

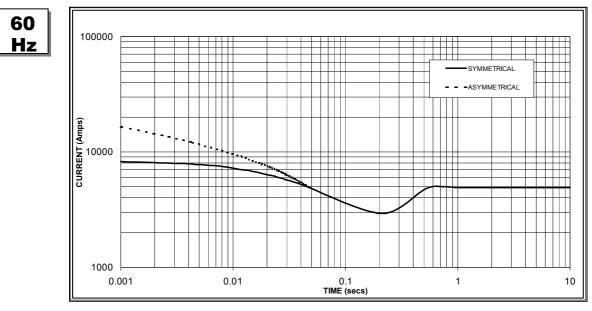


THREE PHASE EFFICIENCY CURVES





Winding 312


Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 3,600 Amps

Sustained Short Circuit = 4,900 Amps

Note 1

STAMFORD

power generation

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz					
Voltage	Factor	Voltage	Factor				
380v	X 1.00	416v	x 1.00				
400v	X 1.07	440v	x 1.06				
415v	X 1.12	460v	x 1.12				
440v	X 1.18	480v	x 1.17				

The sustained current value is constant irrespective of voltage level

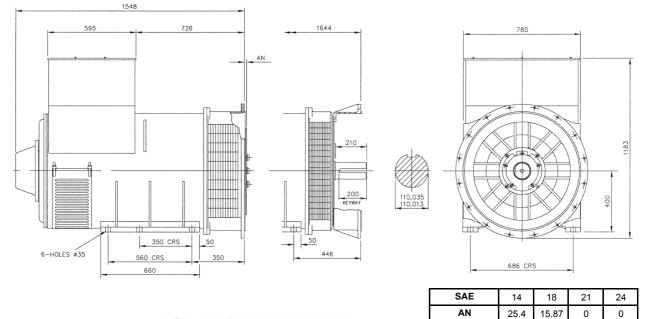
Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N							
Instantaneous	x 1.00	x 0.87	x 1.30							
Minimum	x 1.00	x 1.80	x 3.20							
Sustained	x 1.00	x 1.50	x 2.50							
Max. sustained duration	10 sec.	5 sec.	2 sec.							
All other times are unchanged										

Note 3

Curves are drawn for Star (Wye) connected machines. For Delta connection multiply the Curve current value by 1.732



Winding 312 0.8 Power Factor

RATINGS

Clas	s - Temp Rise	Co	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	Sta	andby -	150/40	°C	Sta	andby -	163/27	″°C
50 Hz	Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	900	927	900	900	1000	1030	1000	1000	1060	1070	1060	1060	1100	1110	1100	1100
	kW	720	742	720	720	800	824	800	800	848	856	848	848	880	888	880	880
	Efficiency (%)	95.3	95.4	95.5	95.6	95.0	95.1	95.3	95.4	94.7	94.9	95.1	95.3	94.6	94.8	95.0	95.2
	kW Input	756	777	754	753	842	866	839	839	895	902	892	890	930	937	926	924
60Hz	Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	1063	1100	1150	1188	1150	1200	1250	1300	1206	1250	1300	1350	1250	1300	1350	1400
	kW	850	880	920	950	920	960	1000	1040	965	1000	1040	1080	1000	1040	1080	1120
	Efficiency (%)	95.2	95.3	95.3	95.4	95.0	95.1	95.1	95.2	94.8	95.0	95.0	95.1	94.7	94.8	94.9	94.9
	kW Input	893	923	965	996	968	1009	1052	1092	1018	1053	1095	1136	1056	1097	1138	1180

DIMENSIONS

PO Box 17 • Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

© 2002 Newage International Limited. Reprinted with permission of N.I. only. Printed in England.

QSL9-G5

> Specification sheet

Our energy working for you.™

Description

Cummins QSL engines are built to deliver heavy-duty performance. Full-authority electronic engine controls combine with the high-pressure fuel system, 24-valve design and centred injectors for one of the highest power-to-weight ratios in its class. At the same time, the QSL delivers better fuel economy, has better cold starting capability and is up to 50% quieter in operation than its predecessors.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

Common Rail Fuel System and Controls - Bosch high pressure common rail (HPCR) - Optimize engine performance to provide seamless integration and advanced diagnostics and programming options.

Holset HX40 Turbo charging - Optimizes transient response.

Integrated Block Design - Integrated fluid circuits replace hoses and eliminate potential leaks.

24-Valve Cylinder Head – Four valves per cylinder for increased power with faster response and fuel economy.

Coolpac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gross Engine Output Net Engine Output					Typical Generator Set Output						
Standby	Prime	Base	Standby	Prime	Base	Standby	(ESP)	Prime	e (PRP)	Base (COP)	
	kWm/BHP kWm/BHP				kWe	kVA	kWe	kVA	kWe	kVA	
310/415	268/359	228/305	297/398	7/398 258/345 218/292		264	330	240	300	203	254

1800 rpm (60 Hz Ratings)

Gross Engine Output Net Engine Output					Typical Generator Set Output						
Standby	Prime	Base	Standby	Prime	Base	Standby	(ESP)	Prime	(PRP)	Base (COP)	
kWm/BHP kWm/BHP				kWe	kVA	kWe	kVA	kWe	kVA		
355/476	307/412	261/350	337/451	337/451 293/392 247/331		300	375	275	344	230	288

General Engine Data

Туре	4 cycle, in-line, Turbo Charged, Air-cooled
Bore mm	114 mm (4.5in.)
Stroke mm	145 mm (5.7in.)
Displacement Litre	8.9 litre (543 in. ³)
Cylinder Block	Cast iron, 6 cylinder
Battery Charging Alternator	70 amps
Starting Voltage	24 volt, negative ground
Fuel System	Direct injection
Fuel Filter	Spin-on fuel filters with water separator
Lube Oil Filter Type(s)	Spin-on full flow filter
Lube Oil Capacity (I)	26.5
Flywheel Dimensions	SAE1

Coolpac Performance Data

Cooling System Design	Air-Air Charge Cooled
Coolant Ratio	50% ethylene glycol; 50% water
Coolant Capacity (I)	15.0
Limiting Ambient Temp.** (℃)	50 (50Hz); 55 (60Hz)
Fan Power (kWm)	10 (50Hz); 11 (60Hz)
Cooling System Air Flow (m ³ /s)**	7.9 (50Hz); 8 (60Hz)
Air Cleaner Type	Light duty dry replaceable element with restriction indicator

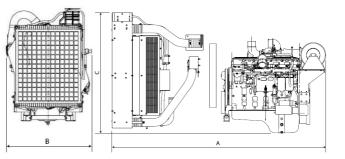
** @ 13 mm H²0

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):


Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Fuel Consumption 1800 (60 Hz)

%	kWm	BHP	L/ph	US gal/ph				
Standby Po	ower							
100	355	476	89	23.6				
Prime Power								
100	307	412	75	19.9				
75	231	309	55	14.4				
50	154	206	36	9.6				
25	77	103	20	5.3				
Continuous	s Power							
100	261	350	63	16.5				

Weight & Dimensions

Length	Width	Height	Weight (dry)		
mm	mm mm		kg		
1624	1064	1463	861		

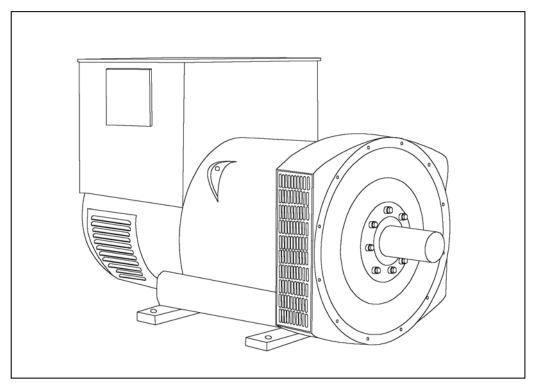
Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph				
Standby Po	ower							
100	310	415	75	19.8				
Prime Power								
100	268	359	63	16.6				
75	201	269	46	12.1				
50	134	180	31	8.2				
25	67	90	17	4.4				
Continuous	s Power							
100	228	305	53	13.9				

Cummins G-Drive Engines

Asia Pacific

10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399 Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902 Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729 Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811


North America

1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

HCI 434D/444D - Technical Data Sheet

HCI434D/444D SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

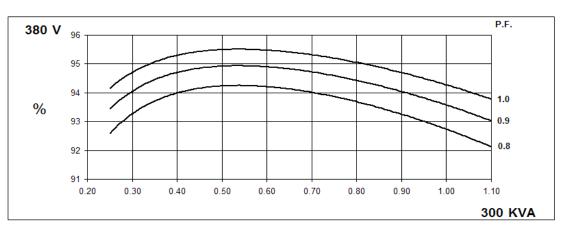
Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

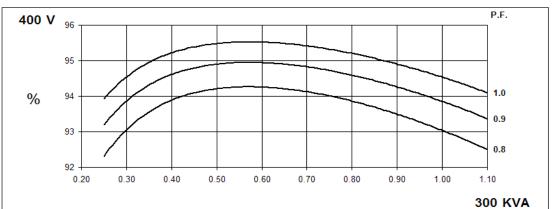
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

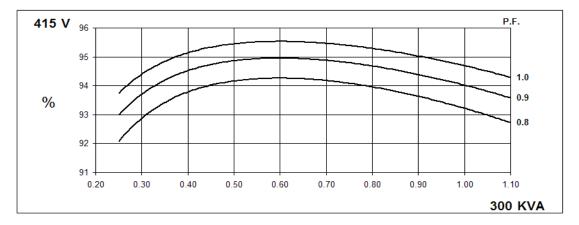
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

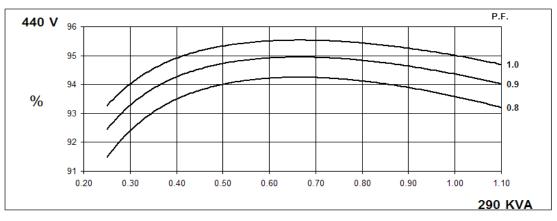
Front cover drawing typical of product range.

WINDING 311

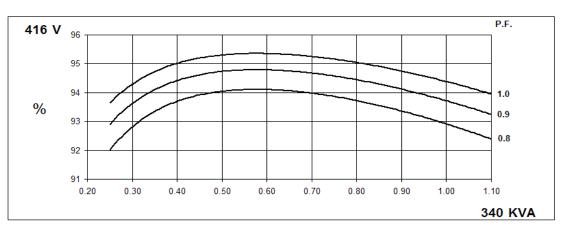

		VVIN	DING 3'	11						
CONTROL SYSTEM	SEPARATE	LY EXCITE	D BY P.M.G	i.						
A.V.R.	MX321	MX341								
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	IGINE GOV	ERNING					
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CI	RCUIT DEC	REMENT C	URVES (pag	je 7)				
	1									
CONTROL SYSTEM	SELF EXCI	TED								
A.V.R.	AS440									
VOLTAGE REGULATION ± 1.0 % With 4% ENGINE GOVERNING										
SUSTAINED SHORT CIRCUIT	WILL NOT	SUSTAIN A	SHORT CIR	RCUIT						
INSULATION SYSTEM				CLA	SS H					
PROTECTION				IP	23					
RATED POWER FACTOR				0	.8					
STATOR WINDING				DOUBLE L	AYER LAP					
				TWO T	HIRDS					
WINDING LEADS					2					
STATOR WDG. RESISTANCE		0.0124.0	hms PER PI			STARCON				
		0.0124 0		-		STAR COP	NINECTED			
ROTOR WDG. RESISTANCE				1.05 Ohm						
EXCITER STATOR RESISTANCE				18 Ohms						
EXCITER ROTOR RESISTANCE	0.068 Ohms PER PHASE AT 22°C									
R.F.I. SUPPRESSION	BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE 0875N. refer to factory for others									
WAVEFORM DISTORTION	NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%									
MAXIMUM OVERSPEED				2250 F	Rev/Min					
BEARING DRIVE END				BALL. 63	317 (ISO)					
BEARING NON-DRIVE END				BALL. 63	314 (ISO)					
		1 BE/	ARING			2 BE/	ARING			
WEIGHT COMP. GENERATOR		94) kg			950) kg			
WEIGHT WOUND STATOR		41	5 kg			41	5 kg			
WEIGHT WOUND ROTOR		36	1 kg			338	3 kg			
WR ² INERTIA		4.077	1 kgm ²			3.878	3 kgm ²			
SHIPPING WEIGHTS in a crate			0 kg				0 kg			
PACKING CRATE SIZE			x 107(cm)				x 107(cm)			
			Hz				Hz			
			<2% : 1700 cfm				<50 c 2100 cfm			
COOLING AIR VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277		
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138		
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138		
kVA BASE RATING FOR	300	300	300	290	340	360	375	375		
REACTANCE VALUES Xd DIR. AXIS SYNCHRONOUS	3.16	2.85	2.65	2.28	3.56	3.37	3.21	2.95		
X'd DIR. AXIS TRANSIENT	0.20	0.18	0.17	0.15	0.22	0.21	0.20	0.18		
X"d DIR. AXIS SUBTRANSIENT	0.20	0.13	0.17	0.10	0.22	0.21	0.20	0.10		
Xq QUAD. AXIS REACTANCE	2.66	2.40	2.23	1.92	3.05	2.89	2.75	2.53		
X"q QUAD. AXIS SUBTRANSIENT	0.39	0.36	0.33	0.28	0.40	0.38	0.36	0.33		
XL LEAKAGE REACTANCE	0.07	0.06	0.06	0.05	0.09	0.09	0.08	0.00		
X2 NEGATIVE SEQUENCE	0.26	0.00	0.22	0.19	0.28	0.00	0.25	0.23		
X ₀ ZERO SEQUENCE	0.10	0.09	0.08	0.07	0.10	0.09	0.09	0.08		
REACTANCES ARE SATURA			LUES ARE F							
T'd TRANSIENT TIME CONST.)8s					
T"d SUB-TRANSTIME CONST.					19s					
T'do O.C. FIELD TIME CONST.					7s					
Ta ARMATURE TIME CONST.					18s					
SHORT CIRCUIT RATIO				1/	Xd					

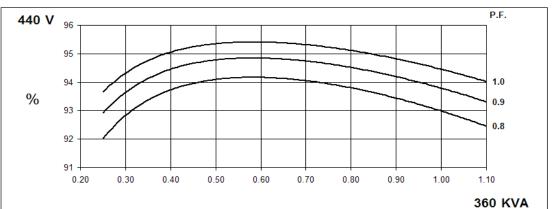

50

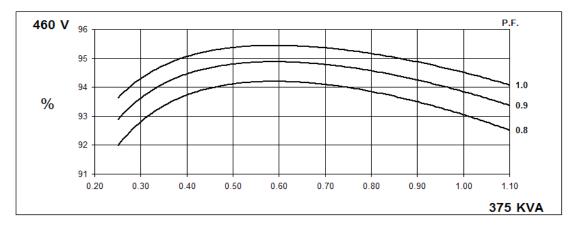

Hz

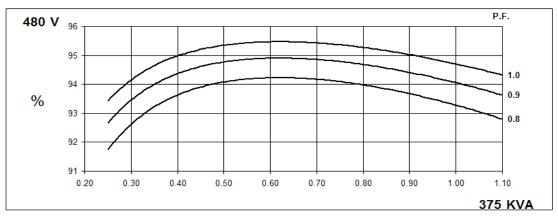

Winding 311

THREE PHASE EFFICIENCY CURVES

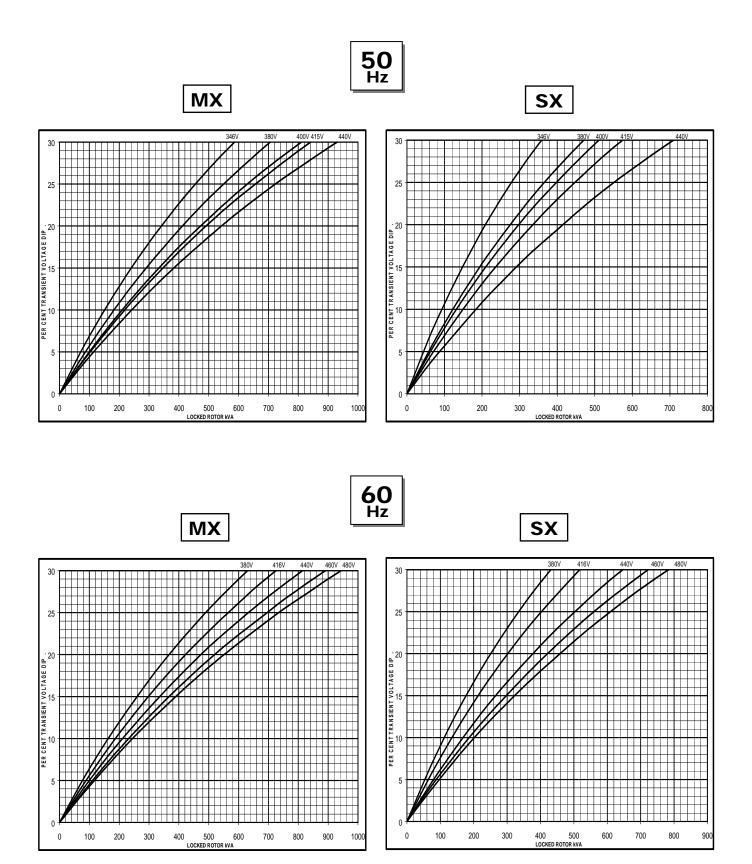


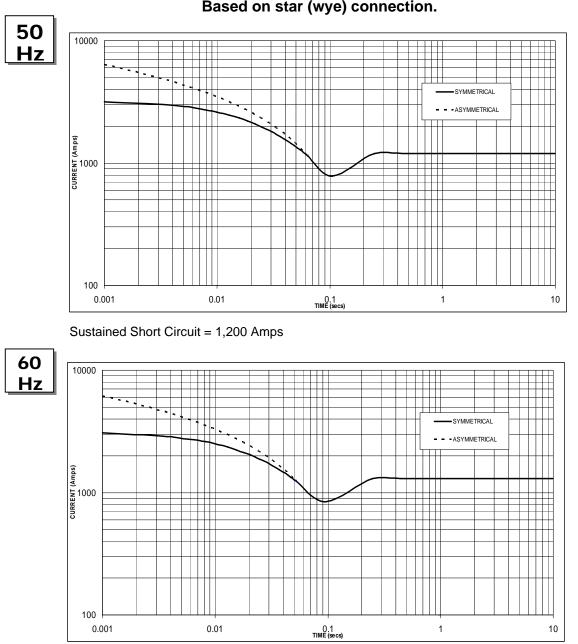

60


Hz


Winding 311

THREE PHASE EFFICIENCY CURVES




Winding 311

Locked Rotor Motor Starting Curve

HCI434D

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 1,300 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

Hz	60Hz				
Factor	Voltage	Factor			
X 1.00	416v	X 1.00			
X 1.05	440v	X 1.06			
X 1.09	460v	X 1.10			
X 1.16	480v	X 1.15			
	X 1.00 X 1.05 X 1.09	Factor Voltage X 1.00 416v X 1.05 440v X 1.09 460v			

The sustained current value is constant irrespective of voltage level

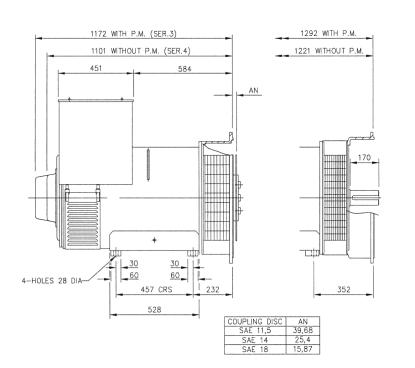
Note 2

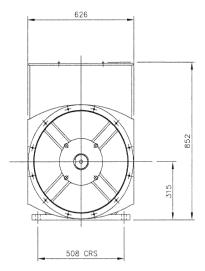
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N						
Instantaneous	x 1.00	x 0.87	x 1.30						
Minimum	x 1.00	x 1.80	x 3.20						
Sustained	x 1.00	x 1.50	x 2.50						
Max. sustained duration	10 sec.	5 sec.	2 sec.						
All other times are unchanged									

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :




Winding 311 / 0.8 Power Factor

RATINGS

	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	′°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	280	280	280	270	300	300	300	290	320	320	320	310	330	330	330	320
	kW	224	224	224	216	240	240	240	232	256	256	256	248	264	264	264	256
	Efficiency (%)	93.1	93.4	93.5	93.8	92.7	93.0	93.2	93.6	92.3	92.7	92.9	93.3	92.1	92.5	92.7	93.2
	kW Input	241	240	240	230	259	258	258	248	277	276	276	266	287	285	285	275
										1				1			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	315	335	345	345	340	360	375	375	365	385	400	400	375	395	415	415
	kW	252	268	276	276	272	288	300	300	292	308	320	320	300	316	332	332
	Efficiency (%)	93.3	93.3	93.4	93.6	92.9	93.0	93.1	93.3	92.5	92.6	92.7	93.0	92.4	92.5	92.5	92.8
	kW Input	270	287	296	295	293	310	322	322	316	333	345	344	325	342	359	358

DIMENSIONS

STAMFORD Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

80,030 80,011

QSL9-G3

Emissions Compliance: EU Stage IIIA at 50 Hz EPA NSPS Stationary Emergency Tier 3

> Specification sheet

Our energy working for you.™

Cummins QSL engines are built to deliver heavy-duty performance. Full-authority electronic engine controls combine with the high-pressure fuel system, 24-valve design and centred injectors for one of the highest power-to-weight ratios in its class. At the same time, the QSL delivers better fuel economy, has better cold starting capability and is up to 50% quieter in operation than its predecessors.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

Common Rail Fuel System and Controls - Bosch high pressure common rail (HPCR) - Optimize engine performance to provide seamless integration and advanced diagnostics and programming options.

Holset HX40 Turbo charging – Waste-gated design optimizes transient response.

Integrated Block Design - Integrated fluid circuits replace hoses and eliminate potential leaks.

24-Valve Cylinder Head – Four valves per cylinder for increased power with faster response & fuel economy.

Coolpac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gross Engine Output Net Engine Output					Typical Generator Set Output						
Standby	Prime	Base	Standby	Prime	Base	Standby	(ESP)	Prime	e (PRP)	Base (COP)	
	kWm/BHP kWm/BHP				kWe	kVA	kWe	kVA	kWe	kVA	
257/345	227/305	193/259	244/327	244/327 217/291 183/245		220	275	200	250	170	213

1800 rpm (60 Hz Ratings)

Gros	s Engine Ou	utput	Net Engine Output			Typical Generator Set Output					
Standby	Prime	Base	Standby	Prime	Base	Standby (ESP)		Prime (PRP)		Base (COP)	
	kWm/BHP		kWm/BHP			kWe	kVA	kWe	kVA	kWe	kVA
297/399	262/352	178/238	280/375	248/332	164/219	250	313	227	284	152	190

General Engine Data

Туре	4 cycle, in-line, Turbo Charged, Air-cooled
Bore mm	114 mm (4.5in.)
Stroke mm	145 mm (5.7in.)
Displacement Litre	8.8 litre (543 in. ³)
Cylinder Block	Cast iron, 6 cylinder
Battery Charging Alternator	70 amps
Starting Voltage	24 volt, negative ground
Fuel System	Direct injection
Fuel Filter	Spin-on fuel filters with water separator
Lube Oil Filter Type(s)	Spin-on full flow filter
Lube Oil Capacity (I)	26.5
Flywheel Dimensions	SAE1/14

Coolpac Performance Data

Cooling System Design	Air-Air Charge Cooled
Coolant Ratio	50% ethylene glycol; 50% water
Coolant Capacity (I)	15.0
Limiting Ambient Temp.** (°C)	50 (50Hz); 55 (60Hz)
Fan Power (kWm)	10 (50Hz); 11 (60Hz)
Cooling System Air Flow (m ³ /s)**	7.9 (50Hz); 8 (60Hz)
Air Cleaner Type	Light duty dry replaceable element with
	restriction indicator

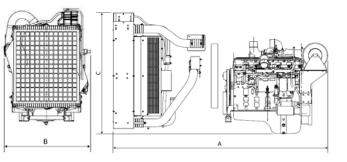
** @ 13 mm H²0

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):


Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Fuel Consumption 1800 (60 Hz)

%	kWm	BHP	L/ph	US gal/ph									
Standby Po	Standby Power												
100	297	399	77	20.4									
Prime Power													
100	262	352	70	18.5									
75	197	264	58	15.2									
50	131	176	41	10.8									
25	66	88	21	5.6									
Continuous	s Power												
100	178	238	53	14.1									

Weight & Dimensions

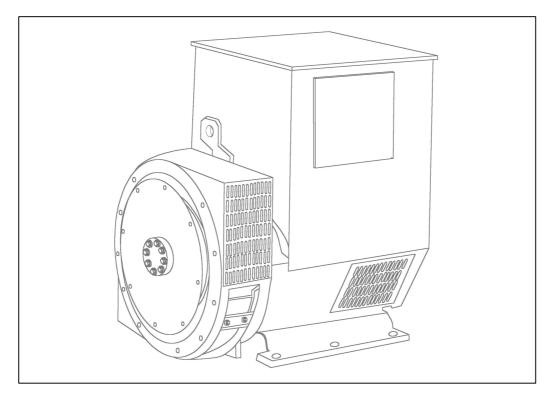
Length	Width	Height	Weight (dry)
mm	mm	mm	kg
1624	1064	1463	861

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph									
Standby Po	Standby Power												
100	257	345	66	17.3									
Prime Power													
100	227	305	59	15.6									
75	170	228	49	13.0									
50	114	152	34	8.9									
25	57	76	18	4.7									
Continuous	s Power												
100	193	259	53	14.1									

Cummins G-Drive Engines

Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399 Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902 Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729 Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811


North America

1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

©2007 | Cummins G-Drive Engines | Specifications Subject to Change Without Notice | Cummins is a registered trademark of Cummins Inc. (01/08) (GDSS122)

UCDI274K - Technical Data Sheet

UCDI274K SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

SX440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The SX440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

If 3-phase sensing is required with the self-excited system, the SX421 AVR must be used.

SX421AVR

This AVR also operates in a self-excited system. It combines all the features of the SX440 with, additionally, three-phase rms sensing for improved regulation and performance. Over voltage protection is provided via a separate circuit breaker. An engine relief load acceptance feature is built in as standard.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

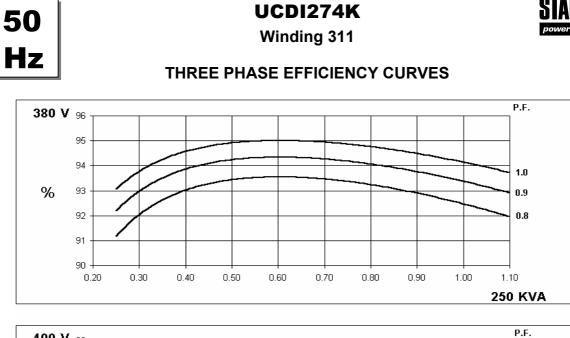
All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

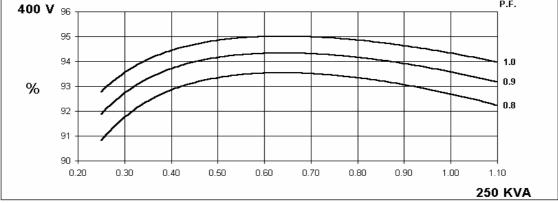
Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

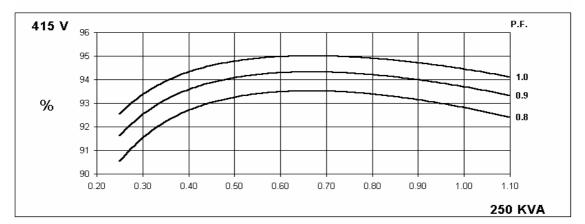
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

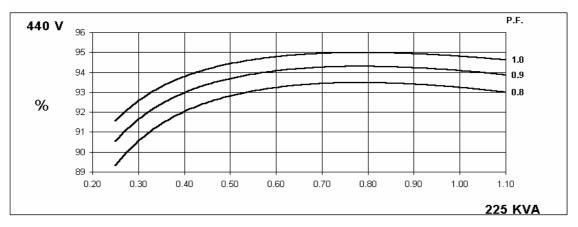
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.


Front cover drawing typical of product range.

STAMFORDpower generation

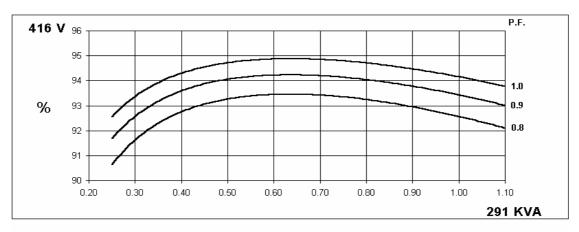

UCDI274K

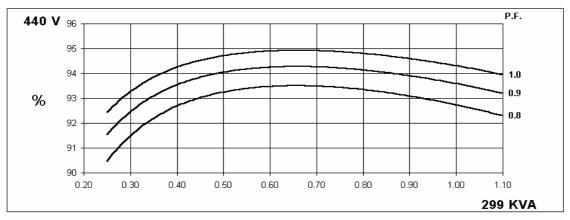

WINDING 311

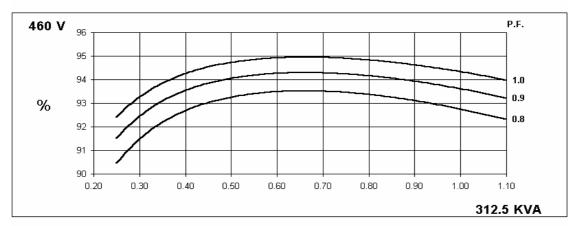

CONTROL SYSTEM	SEPARATEI	Y EXCITED	BYPMG					
A.V.R.	MX321	MX341						
VOLTAGE REGULATION	± 0.5 %	± 1.0 %		GINE GOVEF				
SUSTAINED SHORT CIRCUIT	REFER TO S	SHORT CIRC	UIT DECREM	IENT CURVE	ES (page 7)			
CONTROL SYSTEM	SELF EXCIT	ED						
A.V.R.	SX460	SX440	SX421					
VOLTAGE REGULATION	± 1.5 %	± 1.0 %	± 0.5 %	With 4% EN	GINE GOVER	RNING		
SUSTAINED SHORT CIRCUIT	SERIES 4 C	ONTROL DO	ES NOT SUS	TAIN A SHO	RT CIRCUIT	CURRENT		
INSULATION SYSTEM				CLAS	SS H			
PROTECTION				IP2	23			
RATED POWER FACTOR				0.	8			
STATOR WINDING			DO	UBLE LAYER		RIC		
			20	TWO T				
WINDING LEADS				1:				
STATOR WDG. RESISTANCE		0.0126	Ohms PER P	HASE AT 22	°C SERIES S	STAR CONNE	CTED	
ROTOR WDG. RESISTANCE				2.08 Ohm	s at 22°C			
EXCITER STATOR RESISTANCE				20 Ohms	at 22°C			
EXCITER ROTOR RESISTANCE			0.09	1 Ohms PER	PHASE AT 2	2°C		
R.F.I. SUPPRESSION	BS EI	N 61000-6-2 a	& BS EN 610	0-6-4,VDE 0	875G, VDE 0	875N. refer to	factory for of	thers
WAVEFORM DISTORTION		NO LOAD ·	< 1.5% NON	DISTORTIN	G BALANCED	LINEAR LO	AD < 5.0%	
MAXIMUM OVERSPEED				2250 R	ev/Min			
BEARING NON-DRIVE END				BALL. 6310-				
WEIGHT COMP. GENERATOR				727	· · ·			
WEIGHT WOUND STATOR				304	-			
WEIGHT WOUND ROTOR				272.	-			
WR ² INERTIA				2.3934	-			
SHIPPING WEIGHTS in a crate				740	-			
PACKING CRATE SIZE				123 x 67 x	-			
		50	Hz			60	Hz	
TELEPHONE INTERFERENCE		THF	<2%			TIF<	<50	
COOLING AIR		0.58 m³/se	c 1230 cfm			0.69 m ³ /sec	1463 cfm	
VOLTAGE SERIES STAR (Y)	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277
VOLTAGE PARALLEL STAR (Y)	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138
kVA BASE RATING FOR REACTANCE	250	250	250	n/a	291	299	312.5	312.5
Xd DIR. AXIS SYNCHRONOUS	2.825	2.550	2.369	-	3.161	2.903	2.776	2.550
X'd DIR. AXIS TRANSIENT	0.132	0.119	0.111	-	0.148	0.136	0.130	0.119
X"d DIR. AXIS SUBTRANSIENT	0.086	0.078	0.072	-	0.097	0.089	0.085	0.078
Xq QUAD. AXIS REACTANCE	1.263	1.140	1.059	-	1.413	1.298	1.241	1.140
X"q QUAD. AXIS SUBTRANSIENT	0.152	0.137	0.127	-	0.170	0.156	0.149	0.137
XL LEAKAGE REACTANCE	0.066	0.060	0.056	-	0.074	0.068	0.065	0.060
X2 NEGATIVE SEQUENCE	0.120	0.108	0.100	-	0.134	0.123	0.118	0.108
X0ZERO SEQUENCE	0.022	0.020	0.019	-	0.025	0.023	0.022	0.020
REACTANCES ARE SATURAT	ED	<u>۱</u>	ALUES ARE	PER UNIT A	T RATING AI	ND VOLTAGE	INDICATED	
T'd TRANSIENT TIME CONST.				0.04	9 s			
T"d SUB-TRANSTIME CONST.				0.02				
T'do O.C. FIELD TIME CONST.				1.2				
Ta ARMATURE TIME CONST.				0.01				
SHORT CIRCUIT RATIO				1/)	Kđ			

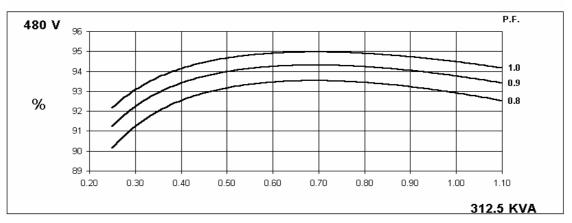
generation

UCDI274K

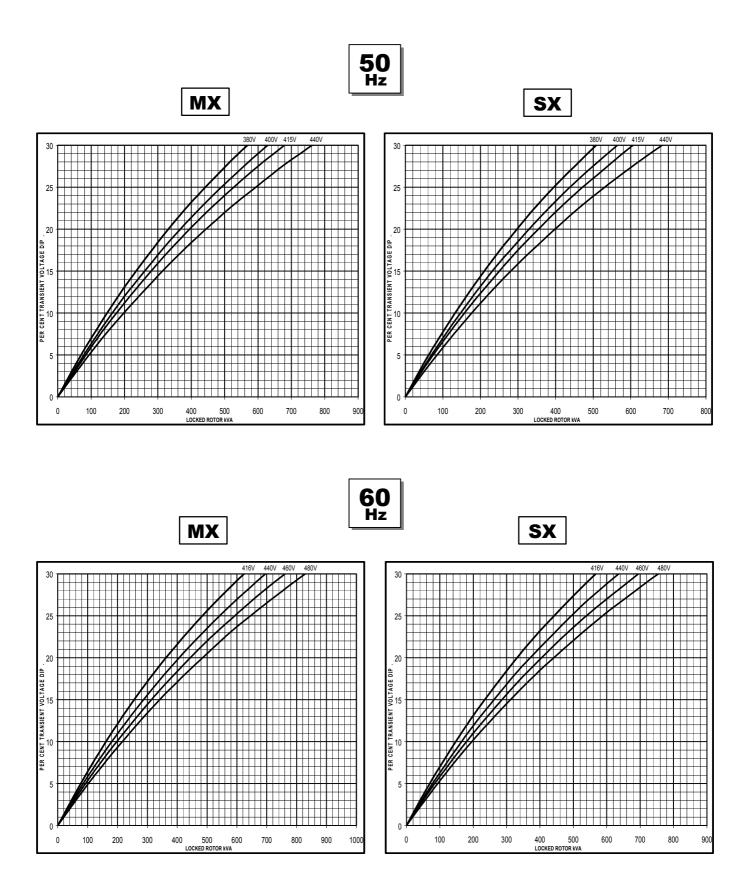

STAMFORD

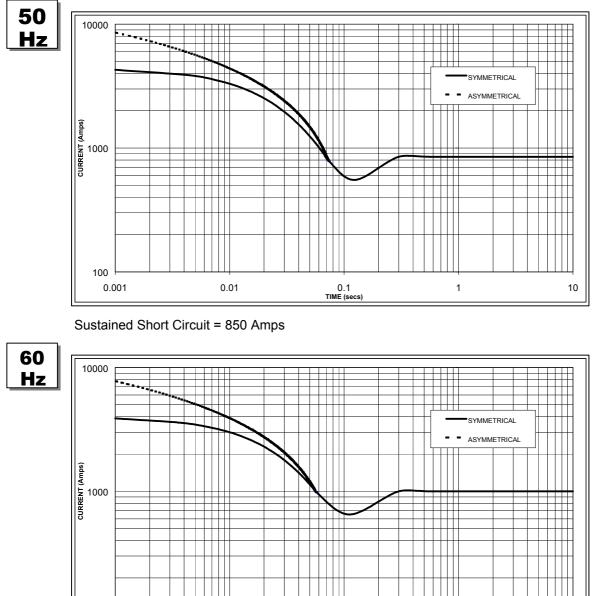

generation


Winding 311



THREE PHASE EFFICIENCY CURVES




Winding 311

Locked Rotor Motor Starting Curve

UCDI274K

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 1,000 Amps

0.01

Note 1

SIAMFIRI

er generation

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

100 0.001

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	X 1.00
400v	X 1.05	440v	X 1.07
415v	X 1.10	460v	X 1.12
440v	X 1.16	480v	X 1.16

The sustained current value is constant irrespective of voltage level

Note 2

0.1 TIME (sec

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

10

1

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

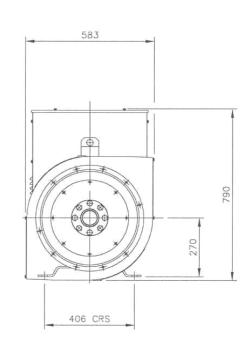
Note 3

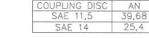
Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

UCDI274K


Winding 311 / 0.8 Power Factor


RATI	NGS
------	-----

	Class - Temp Rise	Co	ont. F -	105/40	°C	Cont. H - 125/40°C Standby -				oy - 150/40°C			Standby - 163/27°C				
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	229.0	229.0	229.0	n/a	250.0	250.0	250.0	n/a	265.0	265.0	265.0	n/a	275.0	275.0	275.0	n/a
	kW	183.2	183.2	183.2	n/a	200.0	200.0	200.0	n/a	212.0	212.0	212.0	n/a	220.0	220.0	220.0	n/a
	Efficiency (%)	92.8	93.0	93.1	n/a	92.5	92.7	92.8	n/a	92.2	92.4	92.6	n/a	92.0	92.2	92.4	n/a
	kW Input	197.4	197.0	196.8	n/a	216.2	215.7	215.5	n/a	229.9	229.4	228.9	n/a	239.1	238.6	238.1	n/a
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	267.0	275.0	286.5	286.5	291.0	299.0	312.5	312.5	304.0	312.5	331.3	331.3	312.0	320.0	343.8	343.8
	kW	213.6	220.0	229.2	229.2	232.8	239.2	250.0	250.0	243.2	250.0	265.0	265.0	249.6	256.0	275.0	275.0
	Efficiency (%)	92.9	93.0	93.1	93.2	92.6	92.7	92.8	92.9	92.4	92.6	92.5	92.7	92.2	92.4	92.3	92.5
	kW Input	229.9	236.6	246.2	245.9	251.4	258.0	269.4	269.1	263.2	270.0	286.5	285.9	270.7	277.1	298.0	297.3

DIMENSIONS

Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

QSK78-G9

Emissions Compliance: EPA Tier 1 @ 50 Hz

> Specification sheet

Our energy working for you.™

Description

The QSK78 is a V 18 cylinder engine with a 78 litre displacement. This Quantum series utilizes sophisticated electronics and premium engineering to provide outstanding performance levels, reliability and versatility for Standby, Prime and Continuous Power applications

ISO 9001

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

The new 4-turbo design architecture QSK78 uses the Cummins High Pressure Injection (HPI) PT full authority electronic fuel system. The HPI PT fuel system is managed by a G-Drive Governor Control System (GCS) controller, which is provided for off-engine mounting in the genset control panel. The Quantum Control has a specific fuel system board to interface with the HPI-PT fuel system and provides an Engine Protection package giving greater customer flexibility and cost effective alternatives in the control design and the benefits of Full Authority electronic control.

CTT (Cummins Turbo Technologies) HX82/HX83 turbocharging utilizes exhaust energy with greater efficiency for improved emissions and fuel consumption.

Low Temperature After-cooling - Two-pump Two-loop (2P2L)

Ferrous Cast Ductile Iron (FCD) Pistons - High strength design delivers superior durability.

G-Drive Integrated Design - Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gros	s Engine Ou	tput	Net	Engine Out	tput	Typical Generator Set Output				
Standby	Prime	Base	Standby	Prime	Base	Standby (ESP)	Prime (PRP)	Base (COP)		

	kWm/BHP kWm/BHP				kWe	kVA	kWe	kVA	kWe	kVA	
2539/3404	2304/3088	2072/2777	2479/3324	2269/3043	2037/2732	2400	3000	2200	2750	1956	2444

General Engine Data

4 cycle, Turbocharged, After-cooled
170
190
77.6
Cast iron, 18 cylinder
55A
24V
Direct injection Cummins HPI
Spin on fuel filters with water separator
Spin on full flow filter
465
SAE 00

Coolpac Performance Data

Cooling System Design	2 pump - 2 loop
Coolant Ratio	50% ethylene glycol; 50% water
Coolant Capacity (I)	
Limiting Ambient Temp.**	Engine only – not applicable
Fan Power	Engine only – not applicable
Cooling System Air Flow (m ³ /s)**	
Air Cleaner Type	Dry replaceable element with restriction indicator
** @ 13 mm H ² 0	

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

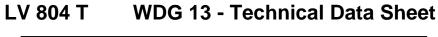
Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

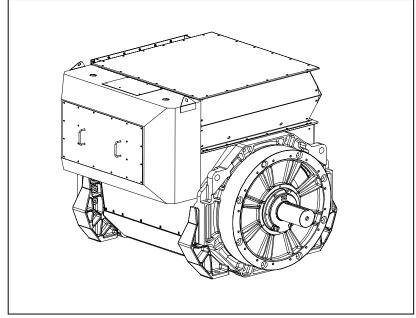
Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
3062	1570	2031	9180

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph			
Standby Power							
100	2539	3404	569	150.3			
Prime Pow	Prime Power						
100	2304	3088	528	139.4			
75	1728	2316	406	107.1			
50	1152	1544	291	76.7			
25	576	772	158	41.8			
Continuou	Continuous Power						
100	2072	2777	476	125.7			


Cummins G-Drive Engines


Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399 Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902 Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811 North America 1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

FRAME LV 804 T

SPECIFICATIONS & OPTIONS

STANDARDS

Cummins Generator Technologies industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC60034, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

DESCRIPTION

The STAMFORD PI range of synchronous ac generators are brushless with a rotating field. They are separately excited by the STAMFORD Permanent Magnet Generato (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the Automatic Voltage Regulator (AVR) to the main exciter. The main exciter output is fed to the main rotor, through a full wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

The P range generators complete with a PMG are available with one AVR. The AVR has soft start voltage build up and built in protection against sustained overexcitation, which will de-excite the generator after a minimum of 8 seconds.

Underspeed protection (UFRO) is also provided on both AVRs. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a presettable level.

The **MA330 AVR** is 3 phase rms sensed with a voltage regulation of 0.5% rms (see the note on regulation). The UFRO circuit has adjustable slope and dwell for controlled recovery from step loads. An over voltage protection circu will shutdown the output device of the AVR, it can also trip an optional excitation circuit breaker if required. As an option, short circuit current limiting is available with the addition of current transformers.

The MA330 AVR needs a generator mounted current transformer to provide quadrature droop characteristics fo load sharing during parallel operation. Provision is also made for the connection of the STAMFORD power factor controller, for embedded applications, and a remote voltage trimmer.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design fc trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected dampel winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'. All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

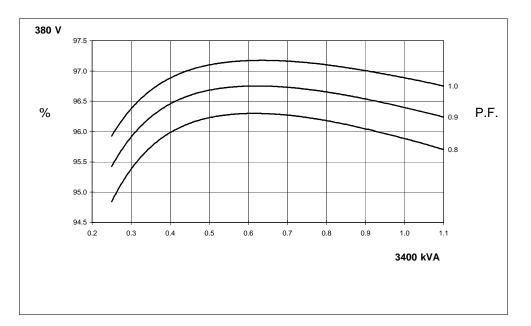
Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

NOTE ON REGULATION

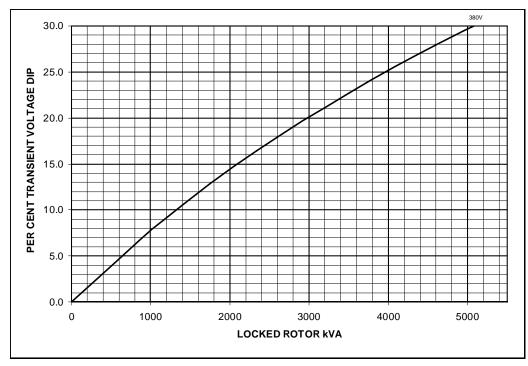
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

Front cover drawing is typical of the product range.

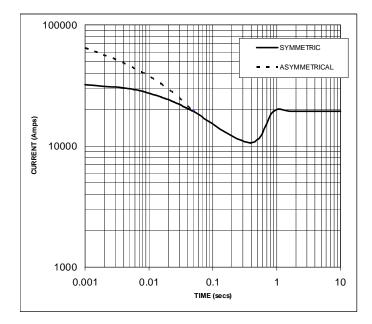


FRAME LV 804 T WINDING 13


RATINGS	REFER TO SALES AND SERVICE BRIEFING		
MAXIMUM ALTITUDE	1000 METRES ABOVE SEA LEVEL		
MAXIMUM AMBIENT TEMPERATURE	40° C		
	40 0		
CONTROL SYSTEM SERIES 3	SEPARATELY EXCITED BY P.M.G.		
A.V.R.	FULL WAVE RECTIFIED		
VOLTAGE REGULATION	± 0.5% WITH 4% ENGINE GOVERNING		
SUSTAINED SHORT CIRCUIT	REFER TO SHORT CIRCUIT DECREMENT CURVES OF THIS SECTION		
INSULATION SYSTEM	CLASS H		
PROTECTION	IP23 STANDARD		
RATED POWER FACTOR	0.8		
STATOR WINDING WINDING PITCH	DOUBLE LAYER LAP		
	2/3		
	6		
R.F.I. SUPPRESSION	BS EN 50081/2-1/2 VDE 0875G VDE 0875N For other standards apply to the factory		
	NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 3.0%		
MAXIMUM OVERSPEED	2250 Rev/Min		
BEARING DRIVE END	ISO 6232 C3		
BEARING NON DRIVE END	ISO 6324 C3		
EFFICIENCY	REFER TO EFFICIENCY CURVES OF THIS SECTION		
FREQUENCY	60Hz		
TELEPHONE INTERFERENCE	TIF< 50		
COOLING AIR	3.7 m ³ /sec		
VOLTAGE STAR (Y)	380		
kVA BASE RATING FOR	0.100		
REACTANCE VALUES	3400		
Xd DIRECT AXIS SYNCHRONOUS	2.900		
X'd DIRECT AXIS TRANSIENT	0.214		
X"d DIRECT AXIS SUB-TRANSIENT	0.158		
Xq QUADRATURE AXIS REACTANCE	1.950		
X"q QUAD. AXIS SUB-TRANSIENT	0.293		
XL LEAKAGE REACTANCE	0.094		
X2 NEGATIVE PHASE SEQUENCE	0.226		
X0ZERO PHASE SEQUENCE	0.029		
REACTANCES ARE SATURATED	VALUES ARE PER UNIT AT RATING AND VOLTAGE INDICATED		
T'd TRANSIENT TIME CONSTANT	0.190		
T"d SUB-TRANSIENT TIME CONSTANT	0.015		
T'do O.C. FIELD TIME CONSTANT	4.300		
Ta ARMATURE TIME CONSTANT	0.075		
SHORT CIRCUIT RATIO	1/Xd		
STATOR WINDING RESISTANCE (L-N)	0.000314		
ROTOR WINDING RESISTANCE			
EXCITER STATOR FIELD RESISTANCE	1.500		
EXCITER ROTOR RESISTANCE (L-L) PMG STATOR RESISTANCE (L-L)	0.076 3.800		
FING STATUK RESISTANCE (L-L)	3.800 RESISTANCE VALUES ARE IN OHMS AT 20° C		
NO LOAD EXCITATION VOLTAGE	15.0		
FULL LOAD EXCITAION VOLTAGE	63.0		

Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

THREE PHASE EFFICIENCY CURVES


FULL WAVE RECTIFIED AVR LOCKED ROTOR MOTOR STARTING CURVE

FRAME LV 804 T WDG 13 60Hz

Three Phase Short Circuit Decrement Curve No- Load Excitation at Rated Speed

Based on series star (wye) connection

NOTE 1

THE FOLLOWING MULTIPLICATION FACTORS SHOULD BE USED TO ADJUST THE VALUES FROM CURVES BETWEEN THE 0.001 SECONDS AND THE MINIMUM CURRENT POINT IN RESPECT OF NOMINAL OPERATING VOLTAGE

VOLTAGE	FACTOR
380V	X 1.00

THE SUSTAINED CURRENT VALUE IS CONSTANT IRRESPECTIVE OF VOLTAGE LEVEL

NOTE 2

THE FOLLOWING MULTIPLICATION FACTORS SHOULD BE USED TO CONVERT THE VALUES CALCULATED IN ACCORDANCE WITH NOTE 1 TO THOSE APPLICABLE TO THE VARIOUS TYPES OF SHORT CIRCUIT

	3 PHASE	2 PHASE L-L	1 PHASE L-N
INSTANTANEOUS	X 1.0	X 0.87	X 1.30
MINIMUM	X 1.0	X 1.80	X 3.20
SUSTAINED	X 1.0	X 1.50	X 2.50
MAX SUSTAINED DURATION	10 SEC	5 SEC	2 SEC
ALL OTHER TIMES ARE UNCHANGED			

SUSTAINED SHORT CIRCUIT =

19372 Amps

FRAME LV 804 T

WINDING 13 0.8 Power Factor

RATINGS

Class - Temp Rise	Cont. F - 105/40°C	Cont. H - 125/40°C	Standby - 150/40°C	Standby - 163/27°C	
50Hz Star (V)	N/A	N/A	N/A	N/A	
kVA	N/A	N/A	N/A	N/A	
kW	N/A	N/A	N/A	N/A	
Efficiency (%)	N/A	N/A	N/A	N/A	
kW Input	N/A	N/A	N/A	N/A	
60Hz Star (V)	380	380	380	380	
kVA	3130	3400	3630	3740	
kW	2504	2720	2904	2992	
Efficiency (%)	96.0	95.9	95.8	95.7	
kW Input	2609	2837	3033	3126	
PBD R/S/T CORES I-BRG ADAPTORS SAE 00 883 787.4 14 679 SAE 00 883 787.4 14 693 PBO W/X CORES 	D SAE AN C	0 12 16.7 641.3 30*	P80 R/S/T/W/X CORES 2-BRG ADAPTORS SAE C P80 R/S/T 0 271.5 P80 R/S/T 0 271.5 P80 W/X 0 271.5 P80 W/X 00 329.0	PB0 R/S/T/W/X CORES 2-866 AbAPC065 SAE 0 SAE 0 N P SAE 0 SAE 0	

STAMFORD AvK

2 BEARING DETAIL

Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

TD_LV804T.13.GB_03.09_09_GB

16 HOLES WIG + 32 DEEP

- 1612 CRS JACK SCREWS --__1612 CRS WITE HOLES #42_ TO SUIT W36 BOLTS

1

QSK60-G13

> Specification sheet

Our energy working for you.™

Description

The QSK60 is a V 16 cylinder engine with a 60 litre displacement. This Quantum series utilizes sophisticated electronics and premium engineering to provide outstanding performance levels, reliability and versatility for Standby, Prime and Continuous Power applications.

ISO 9001

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

High pressure fuel pump, Modular Common Rail fuel System (MCRS) and state of the art integrated electronic control system provide superior performance, efficiency and diagnostics. The electronic fuel pumps deliver up to 1600 bar injection pressure and eliminate mechanical linkage adjustments. The new MCRS utilizes an electric priming pump which is integrated with the off-engine stage-1 fuel filter head and is controlled and powered by the engine ECM. The stage-2 fuel filters are mounted on-engine

CTT (Cummins Turbo Technologies) HX82/HX83 turbocharging utilizes exhaust energy with greater efficiency for improved emissions and fuel consumption.

Low Temperature After-cooling - Two-pump Two-loop (2P2L)

Ferrous Cast Ductile Iron (FCD) Pistons - High strength design delivers superior durability.

G-Drive Integrated Design - Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gross Engine Output			Net Engine Output			Ту	oical Gene	rator Set O	utput		
Standby	Prime	Base	Standby	y Prime Base Standby (ESP)		Prime	e (PRP)	Base	(COP)		
	kWm/BHP			kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA
2164/2901	1727/2315	N/A	2108/2826	1692/2269	N/A	2000	2500	1600	2000	N/A	N⁄A

General Engine Data

Туре	4 cycle, Turbocharged, After-cooled
Bore mm	159
Stroke mm	190
Displacement Litre	60.2
Cylinder Block	Cast iron, 16 cylinder
Battery Charging Alternator	55A
Starting Voltage	24V
Fuel System	Direct injection Cummins MCRS
Fuel Filter	Spin on fuel filters with water separator
Lube Oil Filter Type(s)	Spin on full flow filter
Lube Oil Capacity (I)	280
Flywheel Dimensions	SAE 0

Coolpac Performance Data

Cooling System Design	2 pump – 2 loop
Coolant Ratio	50% ethylene glycol; 50% water
Coolant Capacity (I)	
Limiting Ambient Temp.**	Engine only – not applicable
Fan Power	Engine only – not applicable
Cooling System Air Flow (m ³ /s)**	
Air Cleaner Type	Dry replaceable element with restriction indicator
** @ 13 mm H ² 0	

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
2781	1794	2155	7185

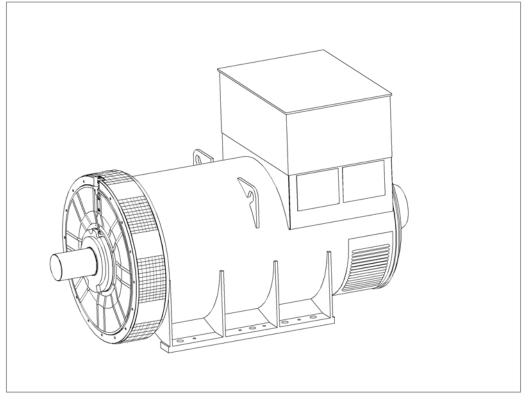
Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph				
Standby Power								
100	2164	2901	523	138.1				
Prime Power								
100	1727	2315	399	105.4				
75	1295	1736	302	79.7				
50	863	1158	210	55.5				
25	432	579	119	31.4				
Continuous Power								
100	N/A	N/A	N/A	N/A				

Cummins G-Drive Engines

Asia Pacific

10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399 Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902 Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729 Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811


North America

1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

PI734F - Technical Data Sheet

PI734F SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC60034, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

DESCRIPTION

The STAMFORD PI range of synchronous ac generators are brushless with a rotating field. They are separately excited by the STAMFORD Permanent Magnet Generator (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the Automatic Voltage Regulator (AVR) to the main exciter. The main exciter output is fed to the main rotor, through a full wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

The PI range generators, complete with a PMG, are available with one of two AVRs. Each AVR has soft start voltage build up and built in protection against sustained over-excitation, which will de-excite the generator after a minimum of 8 seconds.

Underspeed protection (UFRO) is also provided on both AVRs. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a presettable level.

The **MX341 AVR** is two phase sensed with a voltage regulation of ± 1 %. (see the note on regulation).

The **MX321 AVR** is 3 phase rms sensed with a voltage regulation of 0.5% rms (see the note on regulation). The UFRO circuit has adjustable slope and dwell for controlled recovery from step loads. An over voltage protection circuit will shutdown the output device of the AVR, it can also trip an optional excitation circuit breaker if required. As an option, short circuit current limiting is available with the addition of current transformers.

Both the MX341 and the MX321 need a generator mounted current transformer to provide quadrature droop characteristics for load sharing during parallel operation. Provision is also made for the connection of the STAMFORD power factor controller, for embedded applications, and a remote voltage trimmer.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H', and meets the requirements of UL1446.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

NOTE ON REGULATION

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

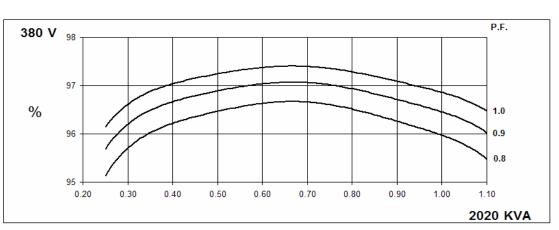
Note: Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

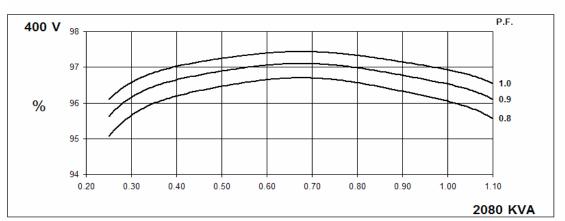
Front cover drawing is typical of the product range.

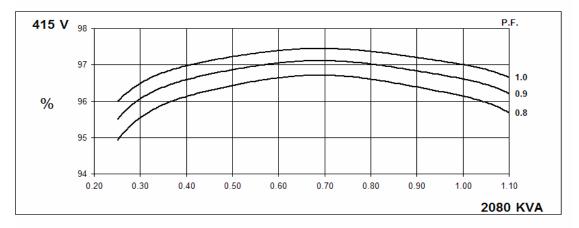
STAMFORD

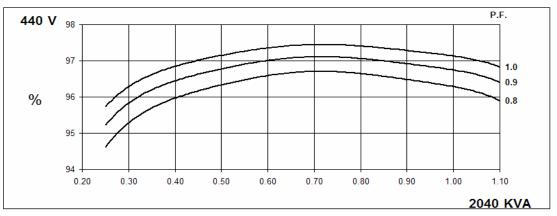
PI734F

WINDING 312

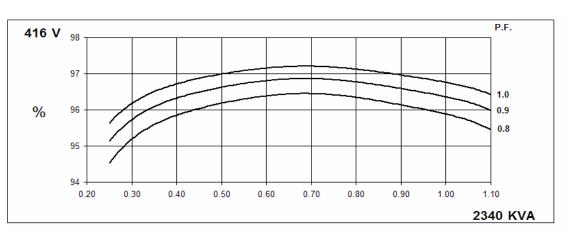

CONTROL SYSTEM	SEPARATEL	Y EXCITED	BY P.M.G.					
A.V.R.	MX341	MX321						
VOLTAGE REGULATION	± 1%	± 0.5 %	With 4% EN	GINE GOVEF	RNING			
SUSTAINED SHORT CIRCUIT	REFER TO S	SHORT CIRC		IENT CURVE	ES (page 7)			
INSULATION SYSTEM				CLAS	SS H			
PROTECTION		IP23						
RATED POWER FACTOR				0.	8			
STATOR WINDING				DOUBLE L	AYER LAP			
WINDING PITCH				TWO T	HIRDS			
WINDING LEADS				6	i			
MAIN STATOR RESISTANCE		0.0	0076 Ohms P	ER PHASE A	T 22°C STA	R CONNECT	ED	
MAIN ROTOR RESISTANCE				2.31 Ohm	s at 22°C			
EXCITER STATOR RESISTANCE				17.5 Ohm:	s at 22°C			
EXCITER ROTOR RESISTANCE			0.06	3 Ohms PER	PHASE AT 2	2°C		
R.F.I. SUPPRESSION	BS EI	N 61000-6-2	& BS EN 6100	0-6-4,VDE 0	875G, VDE 0	875N. refer to	o factory for o	thers
WAVEFORM DISTORTION		NO LOAD	< 1.5% NON-	DISTORTING	BALANCE	D LINEAR LO	AD < 5.0%	
MAXIMUM OVERSPEED				2250 R	ev/Min			
BEARING DRIVE END				BALL. 6	232 C3			
BEARING NON-DRIVE END				BALL. 6	319 C3			
		1 BE/	ARING			2 BEA	RING	
WEIGHT COMP. GENERATOR		384	l0 kg			3807	7 kg	
WEIGHT WOUND STATOR		190)8 kg			1908	3 kg	
WEIGHT WOUND ROTOR			9 kg			1565	5 kg	
WR ² INERTIA)9 kgm ²		48.424 kgm ²			
SHIPPING WEIGHTS in a crate			13kg			387		
PACKING CRATE SIZE			x 154(cm)			216 x 105 x	0	
			Hz			60	. ,	
TELEPHONE INTERFERENCE			-2%			TIF		
COOLING AIR			c 5700 cfm			3.45 m³/sec		
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277
kVA BASE RATING FOR REACTANCE VALUES	2020	2080	2080	2040	2340	2500	2550	2600
Xd DIR. AXIS SYNCHRONOUS	2.93	2.73	2.53	2.21	3.54	3.38	3.16	2.96
X'd DIR. AXIS TRANSIENT	0.18	0.17	0.15	0.13	0.21	0.20	0.19	0.18
X"d DIR. AXIS SUBTRANSIENT	0.13	0.12	0.11	0.10	0.16	0.15	0.14	0.13
Xq QUAD. AXIS REACTANCE	1.89	1.75	1.63	1.42	2.28	2.18	2.03	1.90
X"q QUAD. AXIS SUBTRANSIENT	0.26	0.25	0.23	0.20	0.32	0.31	0.29	0.27
XL LEAKAGE REACTANCE	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.03
X2 NEGATIVE SEQUENCE	0.19					0.22	0.20	0.19
X0 ZERO SEQUENCE	0.02	0.02	0.02	0.02	0.03	0.03	0.02	0.02
REACTANCES ARE SATURATED VALUES ARE PER UNIT AT RATING AND VOLTAGE INDICATED)			
T'd TRANSIENT TIME CONST.	RANSIENT TIME CONST. 0.154s							
T"d SUB-TRANSTIME CONST.				0.0				
T'do O.C. FIELD TIME CONST.				2.5				
TA ARMATURE TIME CONST.				0.0				
HORT CIRCUIT RATIO 1/Xd								

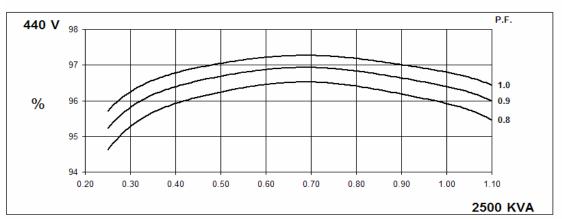


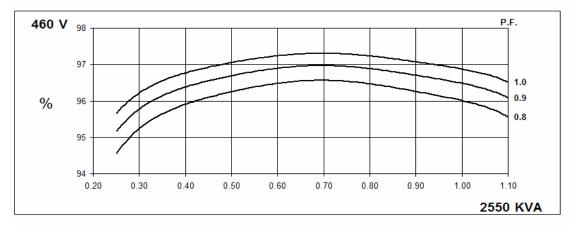

PI734F Winding 312

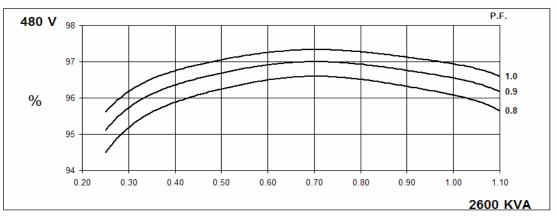

50 Hz

THREE PHASE EFFICIENCY CURVES

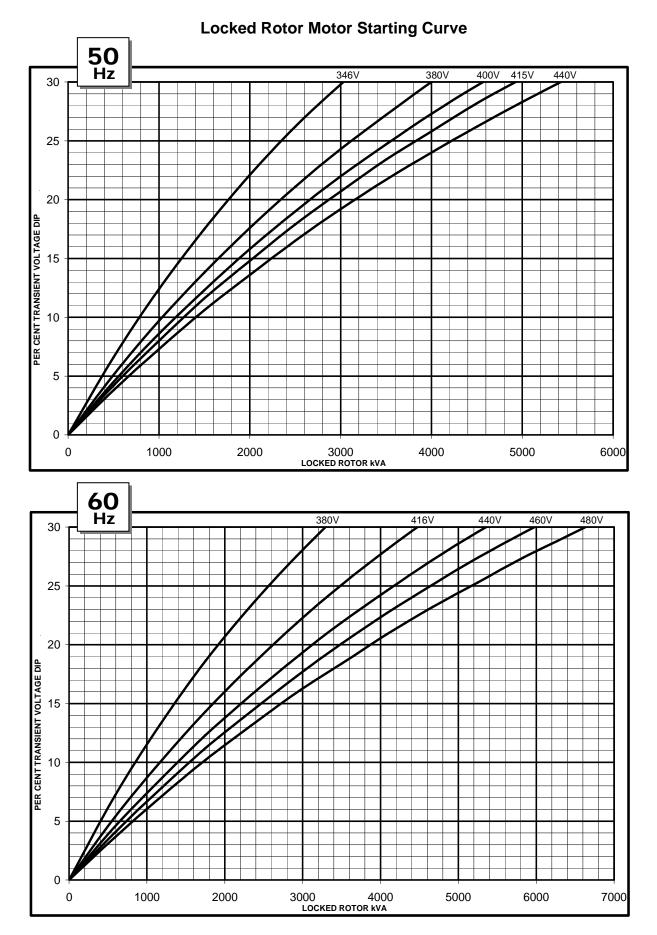


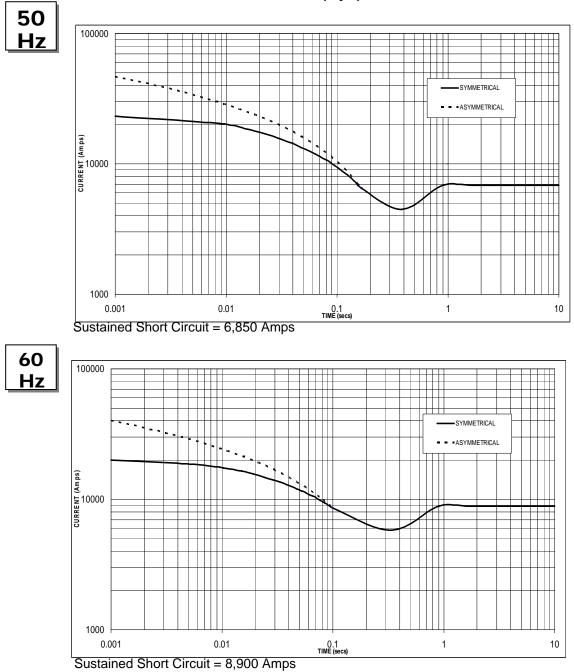



PI734F Winding 312


60 Hz

THREE PHASE EFFICIENCY CURVES




PI734F

Winding 312

PI734F

STAMFORD

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	x 1.00	416v	x 1.00			
400v	x 1.05	440v	x 1.06			
415v	x 1.09	460v	x 1.10			
440v	x 1.16	480v	x 1.15			

The sustained current value is constant irrespective of voltage level

Note 2

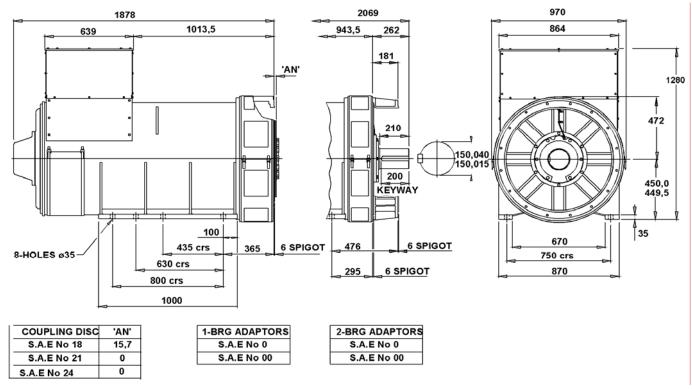
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines.


PI734F

Winding 312 / 0.8 Power Factor

RATINGS

Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	″°C
50Hz Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
kVA	1880	1935	1935	1900	2020	2080	2080	2040	2105	2170	2170	2125	2165	2230	2230	2185
kW	1504	1548	1548	1520	1616	1664	1664	1632	1684	1736	1736	1700	1732	1784	1784	1748
Efficiency (%)	96.1	96.2	96.3	96.4	96.0	96.0	96.1	96.3	95.9	95.9	96.0	96.2	95.8	95.9	96.0	96.2
kW Input	1565	1609	1607	1577	1683	1733	1732	1695	1756	1810	1808	1767	1808	1860	1858	1817
	1				1				I							
60Hz Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
kVA	2180	2325	2370	2420	2340	2500	2550	2600	2435	2600	2650	2705	2505	2675	2730	2785
kW	1744	1860	1896	1936	1872	2000	2040	2080	1948	2080	2120	2164	2004	2140	2184	2228
Efficiency (%)	96.0	96.1	96.1	96.2	95.9	95.9	96.0	96.1	95.8	95.8	95.9	96.0	95.7	95.8	95.9	95.9
kW Input	1817	1935	1973	2012	1952	2086	2125	2164	2033	2171	2211	2254	2094	2234	2277	2323

DIMENSIONS

STAMFORD

Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

QSK60-G7

> Specification sheet

Our energy working for you.™

Description

The QSK60 is a V 16 cylinder engine with a 60 litre displacement. This Quantum series utilizes sophisticated electronics and premium engineering to provide outstanding performance levels, reliability and versatility for Standby, Prime and Continuous Power applications

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

High pressure fuel pump, Modular Common Rail fuel System (MCRS) and state of the art integrated electronic control system provide superior performance, efficiency and diagnostics. The electronic fuel pumps deliver up to 1600 bar injection pressure and eliminate mechanical linkage adjustments. The new MCRS utilizes an electric priming pump which is integrated with the off-engine stage-1 fuel filter head and is controlled and powered by the engine ECM. The stage-2 fuel filters are mounted on-engine

CTT (Cummins Turbo Technologies) HX82/HX83 turbocharging utilizes exhaust energy with greater efficiency for improved emissions and fuel consumption.

Low Temperature After-cooling - Two-pump Two-loop (2P2L)

Ferrous Cast Ductile Iron (FCD) Pistons - High strength design delivers superior durability.

G-Drive Integrated Design - Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gross Engine Output Net Engine Output			Typical Generator Set Output								
Standby	Prime	Base	Standby	Prime	Base	Standby (ESP)		by (ESP) Prime (PRP)		Base (COP)	
	kWm/BHP kWm/BHP			kWe	kVA	kWe	kVA	kWe	kVA		
1790/2399	1615/2165	1305/1749	1737/2329	1580/2119	1270/1703	1825	2000	1517	1825	1219	1524

1800 rpm (60 Hz Ratings)

Gross Engine Output Net Engine Output			Typical Generator Set Output								
Standby	Prime	Base	Standby	Prime	Base	Standby (ESP)		dby (ESP) Prime (PRP)		Base (COP)	
	kWm/BHP kWm/BHP			kWe	kVA	kWe	kVA	kWe	kVA		
2180/2922	1975/2647	1740/2332	2120/2843	1937/2598	1702/2282	2000	2500	1825	2281	1633	2042

General Engine Data

Туре	4 cycle, Turbocharged, After-cooled
Bore mm	159
Stroke mm	190
Displacement Litre	60.2
Cylinder Block	Cast iron, 16 cylinder
Battery Charging Alternator	55A
Starting Voltage	24V
Fuel System	Direct injection Cummins MCRS
Fuel Filter	Spin on fuel filters with water separator
Lube Oil Filter Type(s)	Spin on full flow filter
Lube Oil Capacity (I)	280
Flywheel Dimensions	SAE 0

Coolpac Performance Data

Cooling System Design	2 pump - 2 loop
Coolant Ratio	50% ethylene glycol; 50% water
Coolant Capacity (I)	
Limiting Ambient Temp.**	Engine only – not applicable
Fan Power	Engine only – not applicable
Cooling System Air Flow (m ³ /s)**	
Air Cleaner Type	Dry replaceable element with restriction indicator
** @ 13 mm H ² 0	

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
2781	1794	2155	7185

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph				
Standby Power								
100	1790	2399	415	109.5				
Prime Pow	Prime Power							
100	1615	2165	378	99.7				
75	1211	1624	288	75.9				
50	808	1083	200	52.9				
25	404	541	115	30.3				
Continuous Power								
100	1305	1749	309	81.6				

Cummins G-Drive Engines

Asia Pacific

10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

100 1978 2647 471 75 1481 1985 360

Fuel Consumption 1800 (60 Hz)

kWm

2180

%

Standby Power 100

Prime Power

Mexico

Mexico

50	987	1324	254	67.1				
25	494	662	152	40.1				
Continuous Power								
100	1740	2332	417	110				

BHP

2922

Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 USA

Phone 52 444 870 6700 Fax 52 444 870 6811

North America

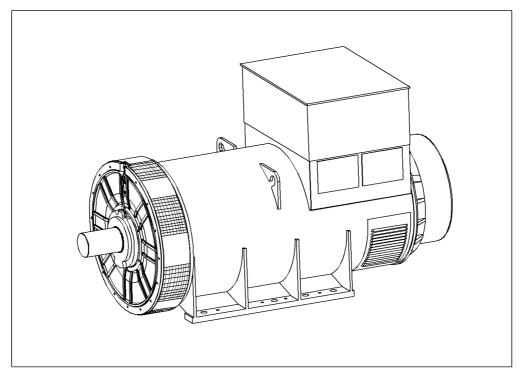
L/ph

520

1400 73rd Avenue N.E. Minneapolis, MN 55432

Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

US gal/ph


137.2

124.2

95.1

PI734E - Technical Data Sheet

PI734E SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC60034, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

DESCRIPTION

The STAMFORD PI range of synchronous ac generators are brushless with a rotating field. They are separately excited by the STAMFORD Permanent Magnet Generator (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the Automatic Voltage Regulator (AVR) to the main exciter. The main exciter output is fed to the main rotor, through a full wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

The PI range generators, complete with a PMG, are available with one of two AVRs. Each AVR has soft start voltage build up and built in protection against sustained over-excitation, which will de-excite the generator after a minimum of 8 seconds.

Underspeed protection (UFRO) is also provided on both AVRs. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a presettable level.

The **MX341 AVR** is two phase sensed with a voltage regulation of ± 1 %. (see the note on regulation).

The **MX321 AVR** is 3 phase rms sensed with a voltage regulation of 0.5% rms (see the note on regulation). The UFRO circuit has adjustable slope and dwell for controlled recovery from step loads. An over voltage protection circuit will shutdown the output device of the AVR, it can also trip an optional excitation circuit breaker if required. As an option, short circuit current limiting is available with the addition of current transformers.

Both the MX341 and the MX321 need a generator mounted current transformer to provide quadrature droop characteristics for load sharing during parallel operation. Provision is also made for the connection of the STAMFORD power factor controller, for embedded applications, and a remote voltage trimmer.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H', and meets the requirements of UL1446.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

NOTE ON REGULATION

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

Note: Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

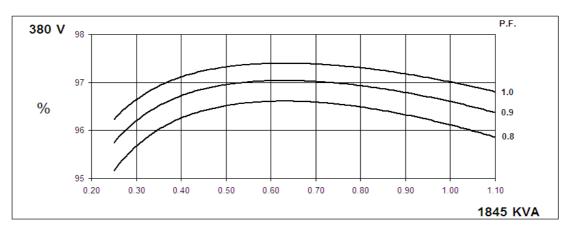
Front cover drawing is typical of the product range.

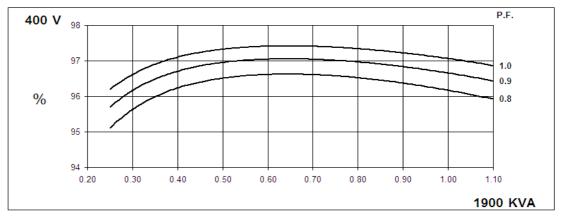
STAMFORD

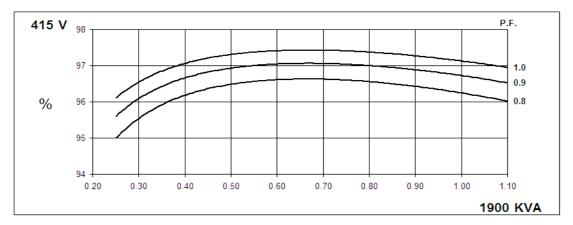
PI734E

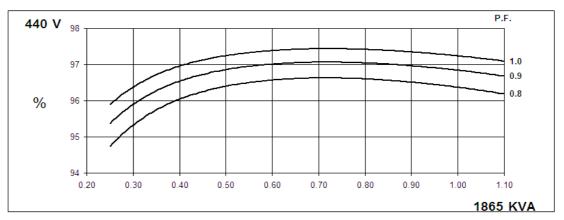
WINDING 312

CONTROL SYSTEM	SEPARATELY EXCITED BY P.M.G.							
A.V.R.	MX341	MX321						
	± 1 % ± 0.5 % With 4% ENGINE GOVERNING							
SUSTAINED SHORT CIRCUIT	REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)							
INSULATION SYSTEM	CLASS H							
PROTECTION	IP23							
RATED POWER FACTOR	0.8							
STATOR WINDING	DOUBLE LAYER LAP							
WINDING PITCH	TWO THIRDS							
WINDING LEADS	6							
MAIN STATOR RESISTANCE	0.00093 Ohms PER PHASE AT 22°C STAR CONNECTED							
MAIN ROTOR RESISTANCE	2.17 Ohms at 22°C							
EXCITER STATOR RESISTANCE	17.5 Ohms at 22°C							
EXCITER ROTOR RESISTANCE	0.048 Ohms PER PHASE AT 22°C							
R.F.I. SUPPRESSION	BS EN 61000-6-2 & BS EN 61000-6-4,VDE 0875G, VDE 0875N. refer to factory for others							
WAVEFORM DISTORTION	NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%							
MAXIMUM OVERSPEED	2250 Rev/Min							
BEARING DRIVE END	BALL. 6228 C3							
BEARING NON-DRIVE END	BALL. 0220 C3 BALL. 6319 C3							
	1 BEARING 2 BEARING						RING	
WEIGHT COMP. GENERATOR	3556 kg				3506 kg			
WEIGHT WOUND STATOR	1747 kg				1747 kg			
WEIGHT WOUND ROTOR	1494 kg				1432 kg			
WR ² INERTIA	45.49 kgm ²				44.4891 kgm ²			
SHIPPING WEIGHTS in a crate	45.49 kgm 3629kg				3575kg			
PACKING CRATE SIZE	216 x 105 x 154(cm)				216 x 105 x 154(cm)			
	50 Hz				60 Hz			
TELEPHONE INTERFERENCE	THF<2%				TIF<50			
COOLING AIR	2.69 m³/sec 5700 cfm				3.45 m³/sec 7300 cfm			
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277
kVA BASE RATING FOR REACTANCE VALUES	1845	1900	1900	1865	2070	2210	2255	2300
Xd DIR. AXIS SYNCHRONOUS	3.18	2.96	2.75	2.40	3.84	3.67	3.42	3.21
X'd DIR. AXIS TRANSIENT	0.19	0.18	0.17	0.15	0.23	0.22	0.21	0.19
X"d DIR. AXIS SUBTRANSIENT	0.14	0.13	0.12	0.11	0.17	0.16	0.15	0.14
Xq QUAD. AXIS REACTANCE	2.04	1.90	1.76	1.54	2.47	2.36	2.20	2.06
X"q QUAD. AXIS SUBTRANSIENT	0.29	0.27	0.25	0.22	0.35	0.33	0.31	0.29
XL LEAKAGE REACTANCE	0.04	0.03	0.03	0.03	0.04	0.04	0.04	0.04
X2 NEGATIVE SEQUENCE	0.20	0.19	0.17	0.15	0.24	0.23	0.22	0.20
X0 ZERO SEQUENCE	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03
REACTANCES ARE SATURATED VALUES ARE PER UNIT AT RATING AND VOLTAGE INDICATED								
T'd TRANSIENT TIME CONST.	0.149s							
T"d SUB-TRANSTIME CONST.	0.02s							
T'do O.C. FIELD TIME CONST.	2.46s							
Ta ARMATURE TIME CONST.	0.02s							
SHORT CIRCUIT RATIO	1/Xd							

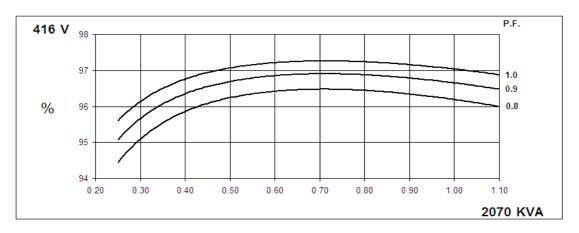


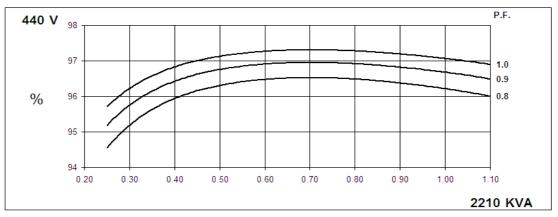

PI734E

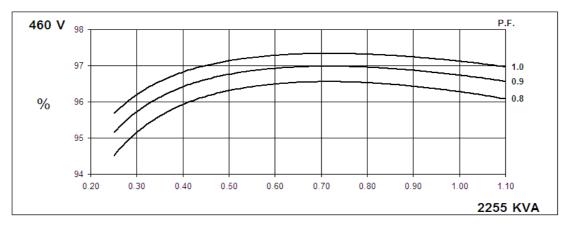


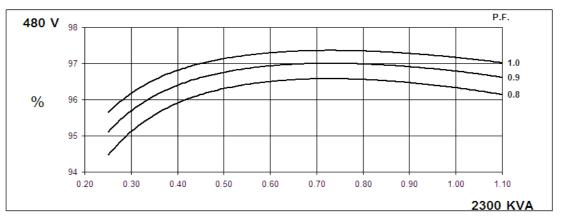

Winding 312

THREE PHASE EFFICIENCY CURVES

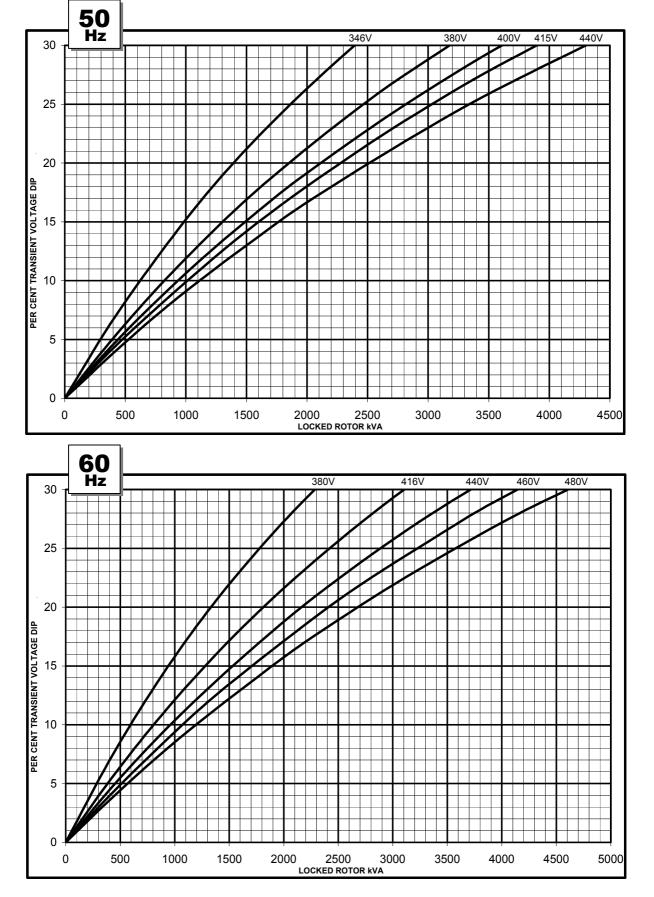



PI734E

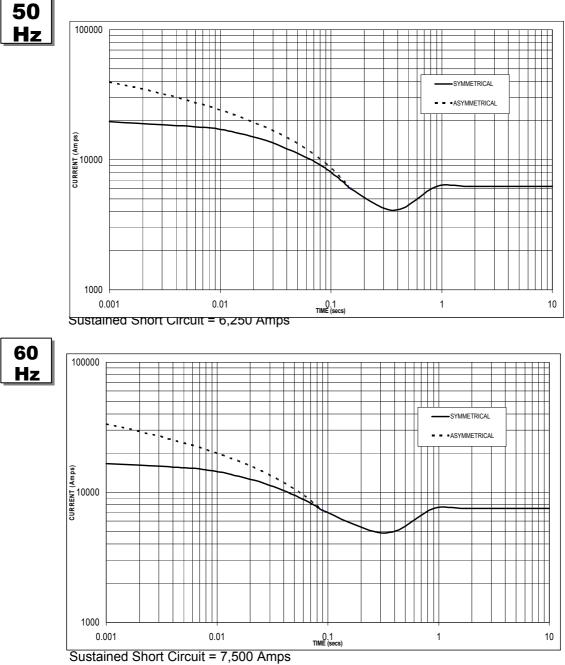

Winding 312



THREE PHASE EFFICIENCY CURVES



PI734E


Winding 312

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz						
Voltage	Factor	Voltage	Factor					
380v	x 1.00	416v	x 1.00					
400v	x 1.05	440v	x 1.06					
415v	x 1.09	460v	x 1.10					
440v	x 1.16	480v	x 1.15					

The sustained current value is constant irrespective of voltage level

Note 2

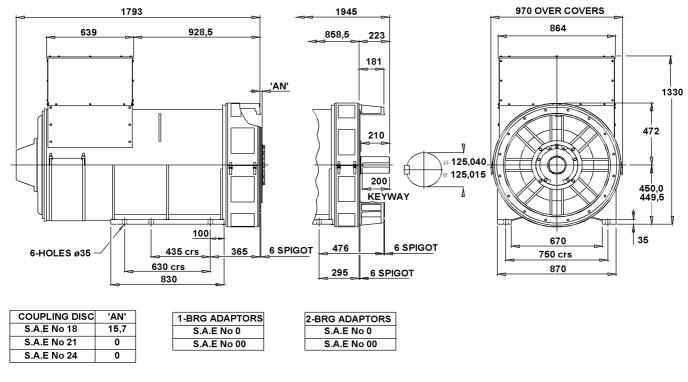
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines.



Winding 312 / 0.8 Power Factor

RATINGS

Class - Temp Rise	e C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	Standby - 150/40°C				Standby - 163/27°C			
50Hz Star (V	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440	
kVA	1715	1770	1770	1735	1845	1900	1900	1865	1920	1980	1980	1940	1975	2035	2035	1995	
k₩	1372	1416	1416	1388	1476	1520	1520	1492	1536	1584	1584	1552	1580	1628	1628	1596	
Efficiency (%)	96.3	96.3	96.4	96.5	96.1	96.2	96.2	96.4	96.0	96.1	96.2	96.3	95.9	96.0	96.1	96.2	
kW Inpu	1425	1470	1469	1438	1536	1580	1580	1548	1600	1648	1647	1612	1648	1696	1694	1659	
																	
60Hz Star (V	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480	
kVA	1935	2055	2100	2140	2070	2210	2255	2300	2155	2300	2345	2395	2215	2365	2415	2465	
k٧	1548	1644	1680	1712	1656	1768	1804	1840	1724	1840	1876	1916	1772	1892	1932	1972	
Efficiency (%	96.3	96.3	96.4	96.4	96.2	96.2	96.3	96.3	96.1	96.1	96.2	96.3	96.1	96.1	96.1	96.2	
kW Inpu	1607	1707	1743	1776	1721	1838	1873	1911	1794	1915	1950	1990	1844	1969	2010	2050	

DIMENSIONS

Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

© 2004 Newage International Limited. Reprinted with permission of N.I. only. Printed in England.

QSK60-G4

> Specification sheet

Our energy working for you.™

Description

The QSK60 is a V 16 cylinder engine with a 60 litre displacement. This Quantum series utilizes sophisticated electronics and premium engineering to provide outstanding performance levels, reliability and versatility for Standby, Prime and Continuous Power applications.

ISO 9001

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

Cummins High Pressure Injection (HPI) PT full authority electronic fuel system. The HPI PT fuel system is managed by a G-Drive Governor Control System (GCS) controller, which is provided for off-engine mounting in the genset control panel. The Quantum Control has a specific fuel system board to interface with the HPI-PT fuel system and provides an Engine Protection package giving greater customer flexibility and cost effective alternatives in the control design and the benefits of Full Authority electronic control.

CTT (Cummins Turbo Technologies) HX82/HX83 turbocharging utilizes exhaust energy with greater efficiency for improved emissions and fuel consumption.

Low Temperature After-cooling - Two-pump Two-loop (2P2L)

Ferrous Cast Ductile Iron (FCD) Pistons - High strength design delivers superior durability.

G-Drive Integrated Design - Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

Coolpac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

1500 rpm (50 Hz Ratings)

Gross Engine Output Net Engine Output					Typical Generator Set Output							
Standby	Prime	Base	Standby	Prime	Base	Standby	ndby (ESP) Prime (PRP)			Base	Base (COP)	
	kWm/BHP			kWm/BHP			kVA	kWe	kVA	kWe	kVA	
1915/2567	1730/2319	1415/1897	1861/2345	1695/2273	1380/1851	1800	2250	1636	2045	1325	1650	

General Engine Data

4 cycle, Turbocharged, After-cooled
159
190
60.2
Cast iron, 16 cylinder
55A
24V
Direct injection Cummins HPI
Spin on fuel filters with water separator
Spin on full flow filter
280
SAE 0

Coolpac Performance Data

Cooling System Design	2 pump - 2 loop
Coolant Ratio	50% ethylene glycol; 50% water
Coolant Capacity (I)	242.0
Limiting Ambient Temp.**	54.9
Fan Power	45.0
Cooling System Air Flow (m ³ /s)**	29.6
Air Cleaner Type	Dry replaceable element with restriction indicator
** @ 13 mm H ² 0	·

** @ 13 mm H²0

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
4123	2494	3296	9685

1 401 00		0.1.1000	(00112)							
%	kWm	BHP	L/ph	US gal/ph						
Standby Po	ower									
100	1915	2567	437	115.3						
Prime Power										
100	1730	2319	394	103.9						
75	1298	1739	291	76.9						
50	865	1160	200	52.7						
25	433	580	114	30.1						
Continuous	s Power									
100	1415	1897	320	84.4						

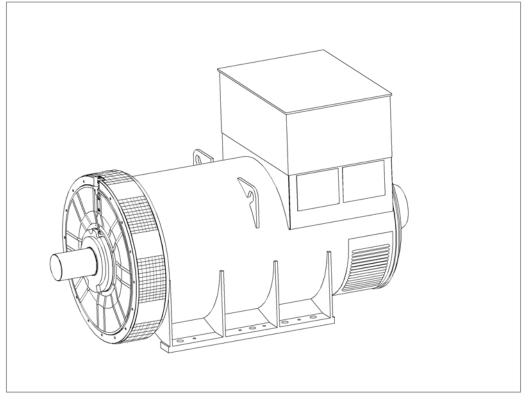
Fuel Consumption 1500 (50 Hz)

Cummins G-Drive Engines

Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399 Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900

Guaruinos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729


Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

North America 1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

PI734F - Technical Data Sheet

PI734F SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC60034, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

DESCRIPTION

The STAMFORD PI range of synchronous ac generators are brushless with a rotating field. They are separately excited by the STAMFORD Permanent Magnet Generator (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the Automatic Voltage Regulator (AVR) to the main exciter. The main exciter output is fed to the main rotor, through a full wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

The PI range generators, complete with a PMG, are available with one of two AVRs. Each AVR has soft start voltage build up and built in protection against sustained over-excitation, which will de-excite the generator after a minimum of 8 seconds.

Underspeed protection (UFRO) is also provided on both AVRs. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a presettable level.

The **MX341 AVR** is two phase sensed with a voltage regulation of ± 1 %. (see the note on regulation).

The **MX321 AVR** is 3 phase rms sensed with a voltage regulation of 0.5% rms (see the note on regulation). The UFRO circuit has adjustable slope and dwell for controlled recovery from step loads. An over voltage protection circuit will shutdown the output device of the AVR, it can also trip an optional excitation circuit breaker if required. As an option, short circuit current limiting is available with the addition of current transformers.

Both the MX341 and the MX321 need a generator mounted current transformer to provide quadrature droop characteristics for load sharing during parallel operation. Provision is also made for the connection of the STAMFORD power factor controller, for embedded applications, and a remote voltage trimmer.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H', and meets the requirements of UL1446.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

NOTE ON REGULATION

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

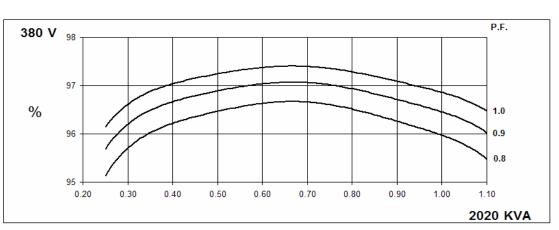
Note: Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

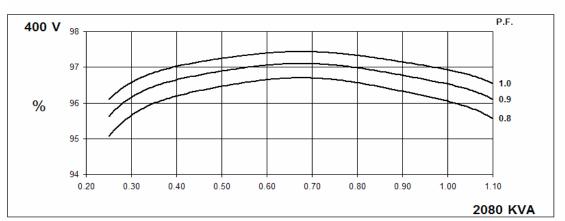
Front cover drawing is typical of the product range.

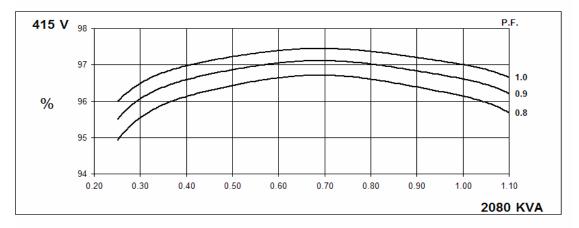
STAMFORD

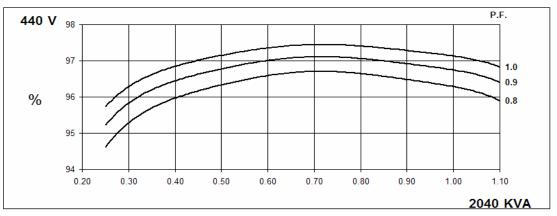
PI734F

WINDING 312

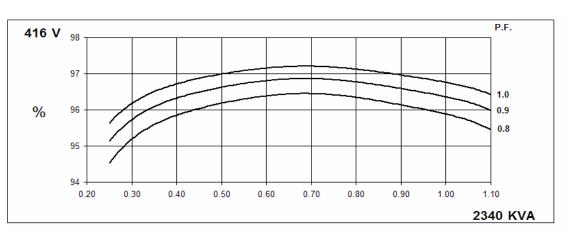

CONTROL SYSTEM	SEPARATEL	Y EXCITED	BY P.M.G.									
A.V.R.	MX341	MX321										
VOLTAGE REGULATION	± 1%	± 0.5 %	With 4% EN	GINE GOVEF	RNING							
SUSTAINED SHORT CIRCUIT	REFER TO S	SHORT CIRC		IENT CURVE	ES (page 7)							
INSULATION SYSTEM				CLAS	SS H							
PROTECTION				IP2	23							
RATED POWER FACTOR		0.8										
STATOR WINDING		DOUBLE LAYER LAP										
WINDING PITCH		TWO THIRDS										
WINDING LEADS		6										
MAIN STATOR RESISTANCE		0.0	0076 Ohms P	ER PHASE A	T 22°C STA	R CONNECT	ED					
MAIN ROTOR RESISTANCE				2.31 Ohm	s at 22°C							
EXCITER STATOR RESISTANCE				17.5 Ohm:	s at 22°C							
EXCITER ROTOR RESISTANCE			0.06	3 Ohms PER	PHASE AT 2	2°C						
R.F.I. SUPPRESSION	BS EI	N 61000-6-2	& BS EN 6100	0-6-4,VDE 0	875G, VDE 0	875N. refer to	o factory for o	thers				
WAVEFORM DISTORTION		NO LOAD	< 1.5% NON-	DISTORTING	BALANCE	D LINEAR LO	AD < 5.0%					
MAXIMUM OVERSPEED		NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0% 2250 Rev/Min										
BEARING DRIVE END		BALL. 6232 C3										
BEARING NON-DRIVE END		BALL. 6262 00										
		1 BE/	ARING			2 BEA	RING					
WEIGHT COMP. GENERATOR		384	l0 kg		3807 kg							
WEIGHT WOUND STATOR		190)8 kg			1908	3 kg					
WEIGHT WOUND ROTOR			9 kg		1565 kg							
WR ² INERTIA)9 kgm ²		48.424 kgm ²							
SHIPPING WEIGHTS in a crate			13kg		3876kg							
PACKING CRATE SIZE			x 154(cm)		216 x 105 x 154(cm)							
			Hz		60 Hz							
TELEPHONE INTERFERENCE			-2%		TIF<50							
COOLING AIR			c 5700 cfm			3.45 m³/sec						
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277				
kVA BASE RATING FOR REACTANCE VALUES	2020	2080	2080	2040	2340	2500	2550	2600				
Xd DIR. AXIS SYNCHRONOUS	2.93	2.73	2.53	2.21	3.54	3.38	3.16	2.96				
X'd DIR. AXIS TRANSIENT	0.18	0.17	0.15	0.13	0.21	0.20	0.19	0.18				
X"d DIR. AXIS SUBTRANSIENT	0.13	0.12	0.11	0.10	0.16	0.15	0.14	0.13				
Xq QUAD. AXIS REACTANCE	1.89	1.75	1.63	1.42	2.28	2.18	2.03	1.90				
X"q QUAD. AXIS SUBTRANSIENT	0.26	0.25	0.23	0.20	0.32	0.31	0.29	0.27				
XL LEAKAGE REACTANCE	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.03				
X2 NEGATIVE SEQUENCE	0.19	0.17	0.16	0.14	0.23	0.22	0.20	0.19				
X0 ZERO SEQUENCE	0.02	0.02	0.02	0.02	0.03	0.03	0.02	0.02				
REACTANCES ARE SATURA	TED	١	ALUES ARE	PER UNIT A	T RATING A	ND VOLTAGE)				
T'd TRANSIENT TIME CONST.				0.15	54s							
T"d SUB-TRANSTIME CONST.				0.0								
T'do O.C. FIELD TIME CONST.				2.5								
TA ARMATURE TIME CONST.				0.0								
SHORT CIRCUIT RATIO	1/Xd											

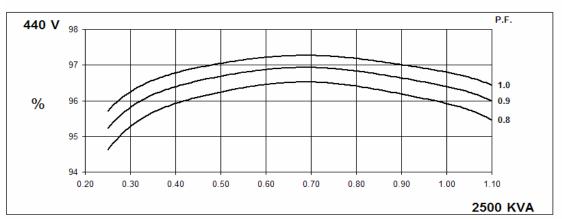


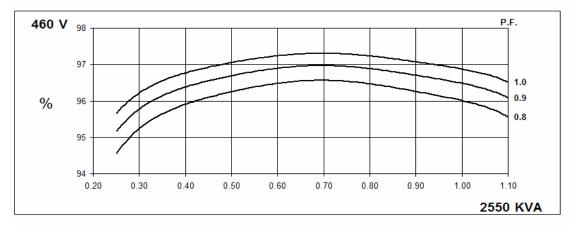

PI734F Winding 312

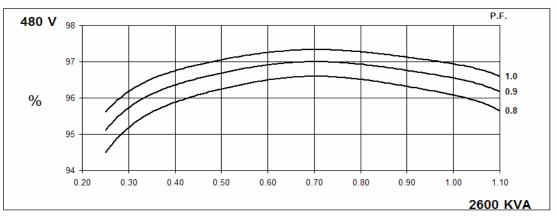

50 Hz

THREE PHASE EFFICIENCY CURVES

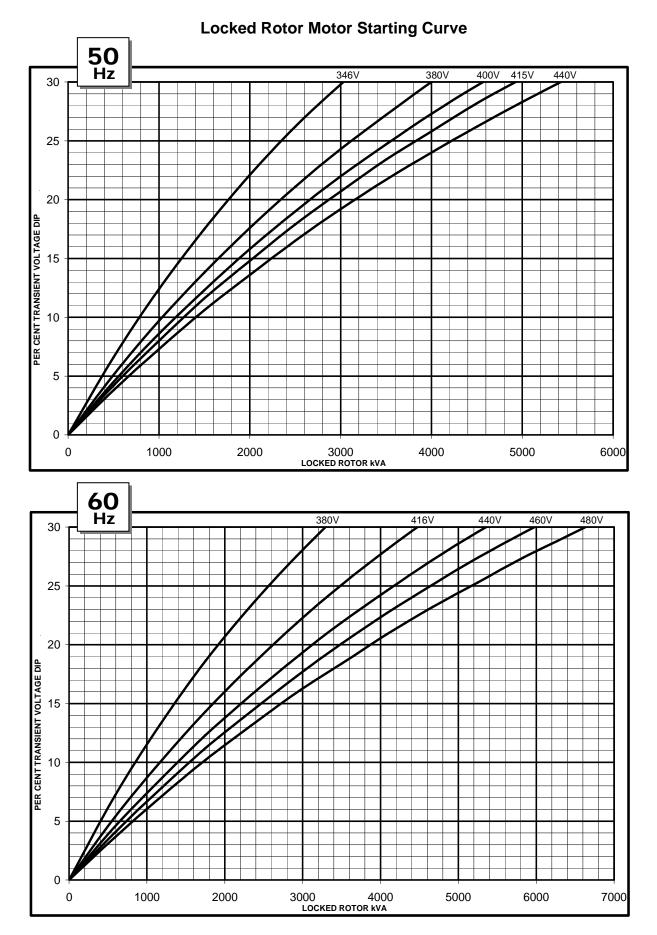


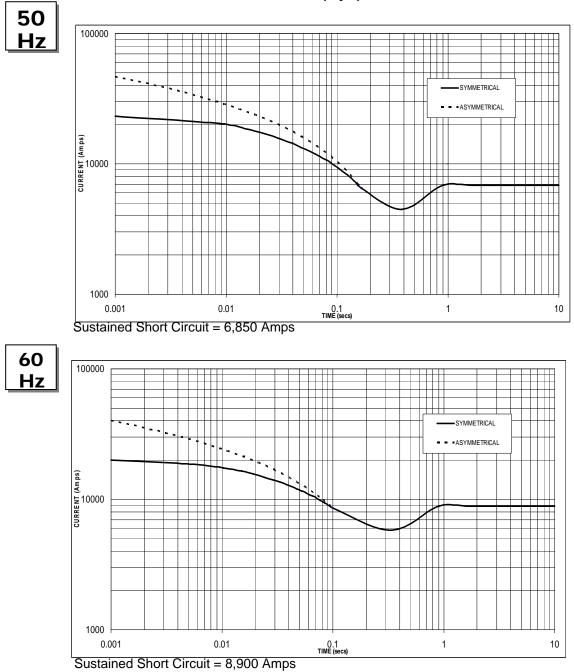



PI734F Winding 312


60 Hz

THREE PHASE EFFICIENCY CURVES




PI734F

Winding 312

PI734F

STAMFORD

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz						
Voltage	Factor	Voltage	Factor					
380v	x 1.00	416v	x 1.00					
400v	x 1.05	440v	x 1.06					
415v	x 1.09	460v	x 1.10					
440v	x 1.16	480v	x 1.15					

The sustained current value is constant irrespective of voltage level

Note 2

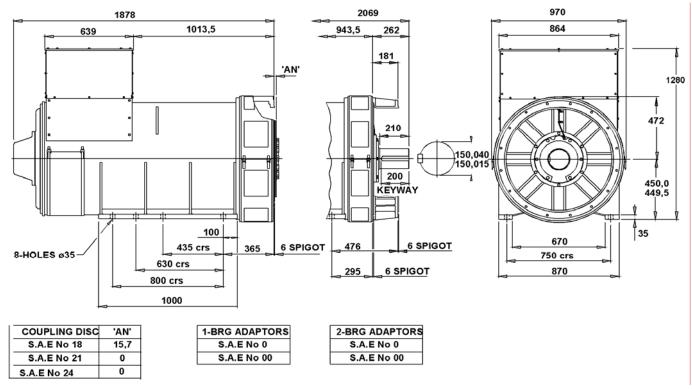
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines.


PI734F

Winding 312 / 0.8 Power Factor

RATINGS

Class - Temp Rise	C	ont. F -	105/40	°C	Co	Cont. H - 125/40°C			Standby - 150/40°C				Standby - 163/27°C			
50Hz Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
kVA	1880	1935	1935	1900	2020	2080	2080	2040	2105	2170	2170	2125	2165	2230	2230	2185
kW	1504	1548	1548	1520	1616	1664	1664	1632	1684	1736	1736	1700	1732	1784	1784	1748
Efficiency (%)	96.1	96.2	96.3	96.4	96.0	96.0	96.1	96.3	95.9	95.9	96.0	96.2	95.8	95.9	96.0	96.2
kW Input	1565	1609	1607	1577	1683	1733	1732	1695	1756	1810	1808	1767	1808	1860	1858	1817
	1								I							
60Hz Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
kVA	2180	2325	2370	2420	2340	2500	2550	2600	2435	2600	2650	2705	2505	2675	2730	2785
kW	1744	1860	1896	1936	1872	2000	2040	2080	1948	2080	2120	2164	2004	2140	2184	2228
Efficiency (%)	96.0	96.1	96.1	96.2	95.9	95.9	96.0	96.1	95.8	95.8	95.9	96.0	95.7	95.8	95.9	95.9
kW Input	1817	1935	1973	2012	1952	2086	2125	2164	2033	2171	2211	2254	2094	2234	2277	2323

DIMENSIONS

STAMFORD

Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

QSK60-G3

> Specification sheet

Our energy working for you.™

Description

The QSK60 is a V 16 cylinder engine with a 60 litre displacement. This Quantum series utilizes sophisticated electronics and premium engineering to provide outstanding performance levels, reliability and versatility for Standby, Prime and Continuous Power applications.

This engine has been built to comply with CE certification.

1<u>\$0 9001</u>

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

Cummins High Pressure Injection (HPI) PT full authority electronic fuel system. The HPI PT fuel system is managed by a G-Drive Governor Control System (GCS) controller, which is provided for off-engine mounting in the genset control panel. The Quantum Control has a specific fuel system board to interface with the HPI-PT fuel system and provides an Engine Protection package giving greater customer flexibility and cost effective alternatives in the control design and the benefits of Full Authority electronic control.

CTT (Cummins Turbo Technologies) HX82/HX83 turbocharging utilizes exhaust energy with greater efficiency for improved emissions and fuel consumption.

Low Temperature After-cooling - Two-pump Two-loop (2P2L)

Ferrous Cast Ductile Iron (FCD) Pistons - High strength design delivers superior durability.

G-Drive Integrated Design - Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

Coolpac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

1500 rpm (50 Hz Ratings)

Gros	s Engine Ou	Engine Output Net Engine Output			Typical Generator Set Output						
Standby	Prime	Base	Standby	Prime	Base	Base Standby (ESP)			e (PRP)	Base (COP)	
	kWm/BHP			kWm/BHP			kVA	kWe	kVA	kWe	kVA
1790/2399	1615/2165	1305/1749	1737/2329	1580/2119	1270/1703	1600	2000	1500	1875	1219	1524

General Engine Data

4 cycle, Turbocharged, After-cooled
159
190
60.2
Cast iron, 16 cylinder
55A
24V
Direct injection Cummins HPI
Spin on fuel filters with water separator
Spin on full flow filter
280
SAE 0

Coolpac Performance Data

Cooling System Design	2 pump - 2 loop
Coolant Ratio	50% ethylene glycol; 50% water
Coolant Capacity (I)	242.0
Limiting Ambient Temp.**	54.1
Fan Power	45.0
Cooling System Air Flow (m ³ /s)**	32.3
Air Cleaner Type	Dry replaceable element with restriction indicator
** @ 13 mm H ² 0	

@ 13 mm H²0

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
4123	2494	2995	9685

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph							
Standby Po	Standby Power										
100	1790	408	107.8								
Prime Power											
100	1615	2165	371	97.9							
75	1211	1624	276	73.0							
50	808	1082	196	51.7							
25	404	541	114	30.0							
Continuous Power											
100	1305	1749	299	78.8							

Cummins G-Drive Engines

Asia Pacific

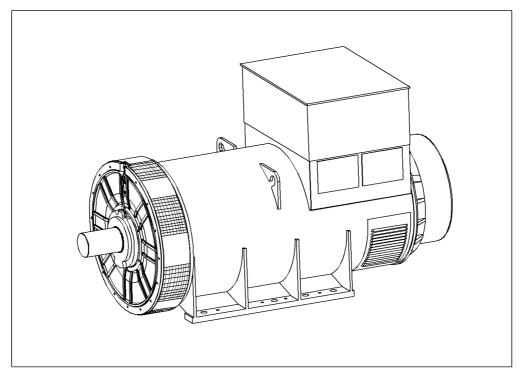
10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

North America 1400 73rd Avenue N.E.


Minneapolis, MN 55432 USA

Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

PI734E - Technical Data Sheet

PI734E SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC60034, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

DESCRIPTION

The STAMFORD PI range of synchronous ac generators are brushless with a rotating field. They are separately excited by the STAMFORD Permanent Magnet Generator (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the Automatic Voltage Regulator (AVR) to the main exciter. The main exciter output is fed to the main rotor, through a full wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

The PI range generators, complete with a PMG, are available with one of two AVRs. Each AVR has soft start voltage build up and built in protection against sustained over-excitation, which will de-excite the generator after a minimum of 8 seconds.

Underspeed protection (UFRO) is also provided on both AVRs. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a presettable level.

The **MX341 AVR** is two phase sensed with a voltage regulation of ± 1 %. (see the note on regulation).

The **MX321 AVR** is 3 phase rms sensed with a voltage regulation of 0.5% rms (see the note on regulation). The UFRO circuit has adjustable slope and dwell for controlled recovery from step loads. An over voltage protection circuit will shutdown the output device of the AVR, it can also trip an optional excitation circuit breaker if required. As an option, short circuit current limiting is available with the addition of current transformers.

Both the MX341 and the MX321 need a generator mounted current transformer to provide quadrature droop characteristics for load sharing during parallel operation. Provision is also made for the connection of the STAMFORD power factor controller, for embedded applications, and a remote voltage trimmer.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H', and meets the requirements of UL1446.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

NOTE ON REGULATION

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

Note: Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

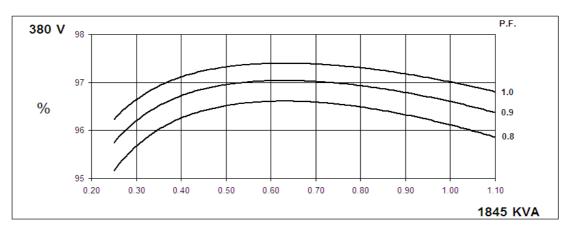
Front cover drawing is typical of the product range.

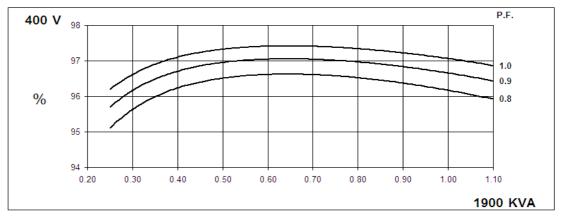
STAMFORD

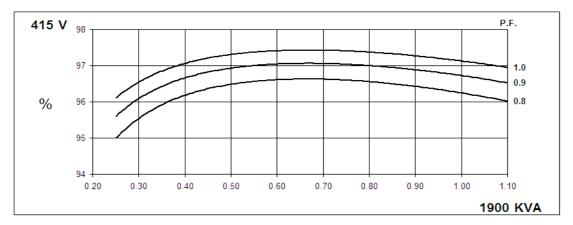
PI734E

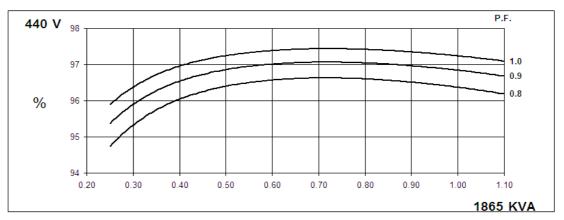
WINDING 312

CONTROL SYSTEM	SEDADATE	Y EXCITED	BYPMC							
		MX321								
A.V.R.	MX341									
	±1%	± 0.5 %	With 4% EN							
SUSTAINED SHORT CIRCUIT	REFER TO S	SHORT CIRC		IENT CURVE	S (page 7)					
INSULATION SYSTEM				CLAS	SS H					
PROTECTION		IP23								
RATED POWER FACTOR				0.	8					
STATOR WINDING				DOUBLE L	AYER LAP					
WINDING PITCH				TWO T	HIRDS					
WINDING LEADS				6	i					
MAIN STATOR RESISTANCE		0.0	0093 Ohms P	ER PHASE A	T 22°C STA	R CONNECT	ED			
MAIN ROTOR RESISTANCE				2.17 Ohm	s at 22°C					
EXCITER STATOR RESISTANCE				17.5 Ohm	s at 22°C					
EXCITER ROTOR RESISTANCE			0.04	3 Ohms PER	PHASE AT 2	2°C				
R.F.I. SUPPRESSION	BS EI	N 61000-6-2	& BS EN 610	0-6-4,VDE 0	875G, VDE 0	875N. refer to	o factory for o	thers		
WAVEFORM DISTORTION		NO LOAD	< 1.5% NON-	DISTORTING	BALANCE) LINEAR LO	AD < 5.0%			
MAXIMUM OVERSPEED				2250 R						
BEARING DRIVE END										
BEARING NON-DRIVE END	BALL. 6228 C3 BALL. 6319 C3									
	1 BEARING 2 BEARING									
WEIGHT COMP. GENERATOR			56 kg			3506				
WEIGHT WOUND STATOR			17 kg			1747	U U			
WEIGHT WOUND ROTOR)4 kg			1432	•			
WR ² INERTIA			9 kgm ²			44.489				
SHIPPING WEIGHTS in a crate			29kg			357	-			
PACKING CRATE SIZE			x 154(cm)			216 x 105 x	0			
) Hz							
TELEPHONE INTERFERENCE			-<2%		60 Hz TIF<50					
COOLING AIR			- <u>-</u> ,0		3.45 m³/sec 7300 cfm					
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277		
kVA BASE RATING FOR REACTANCE VALUES	1845	1900	1900	1865	2070	2210	2255	2300		
Xd DIR. AXIS SYNCHRONOUS	3.18	2.96	2.75	2.40	3.84	3.67	3.42	3.21		
X'd DIR. AXIS TRANSIENT	0.19	0.18	0.17	0.15	0.23	0.22	0.21	0.19		
X"d DIR. AXIS SUBTRANSIENT	0.14	0.13	0.12	0.11	0.17	0.16	0.15	0.14		
Xq QUAD. AXIS REACTANCE	2.04	1.90	1.76	1.54	2.47	2.36	2.20	2.06		
X"q QUAD. AXIS SUBTRANSIENT	0.29	0.27	0.25	0.22	0.35	0.33	0.31	0.29		
XL LEAKAGE REACTANCE	0.04	0.03	0.03	0.03	0.04	0.04	0.04	0.04		
X2 NEGATIVE SEQUENCE	0.20	0.19	0.17	0.15	0.24	0.23	0.22	0.20		
X0 ZERO SEQUENCE	0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03									
REACTANCES ARE SATURA	red	Ň	ALUES ARE	PER UNIT A	T RATING AI		INDICATED			
T'd TRANSIENT TIME CONST.				0.14	19s					
T"d SUB-TRANSTIME CONST.				0.0						
T'do O.C. FIELD TIME CONST.										
TA ARMATURE TIME CONST.				0.0						
SHORT CIRCUIT RATIO	RATIO 1/Xd									

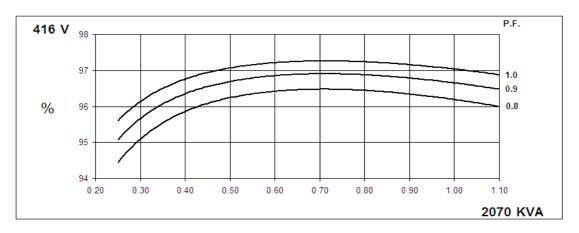


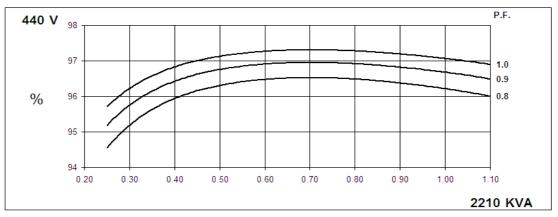

PI734E

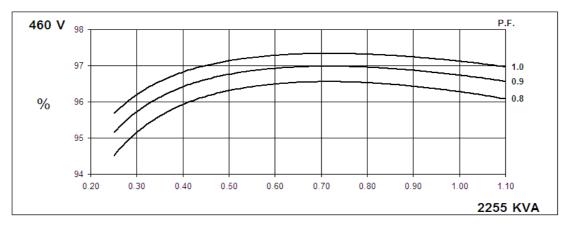


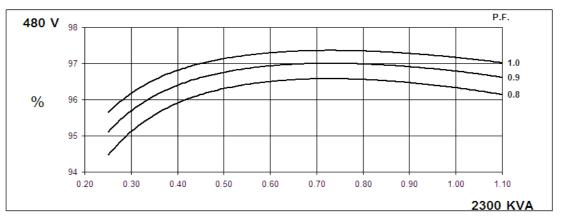

Winding 312

THREE PHASE EFFICIENCY CURVES

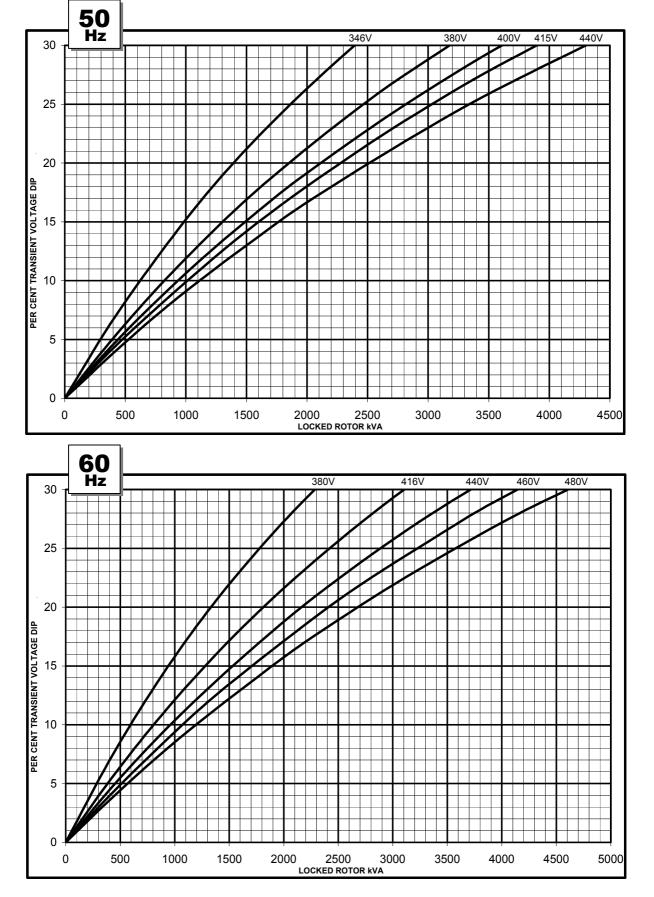


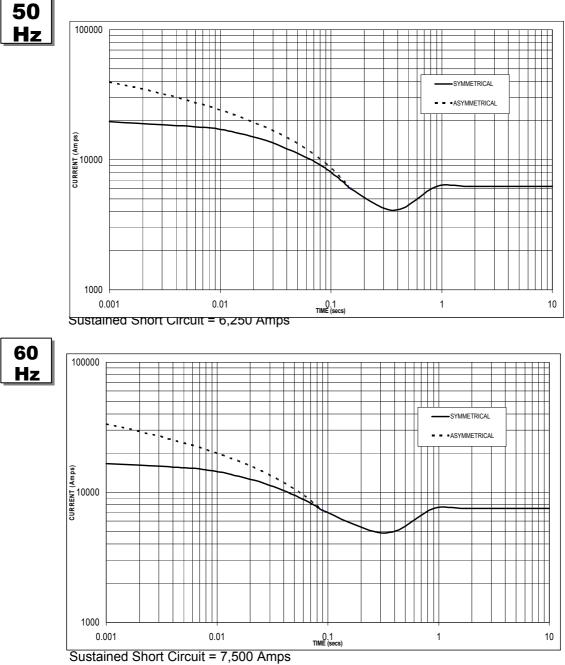



Winding 312



THREE PHASE EFFICIENCY CURVES




Winding 312

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	x 1.00	416v	x 1.00			
400v	x 1.05	440v	x 1.06			
415v	x 1.09	460v	x 1.10			
440v	x 1.16	480v	x 1.15			

The sustained current value is constant irrespective of voltage level

Note 2

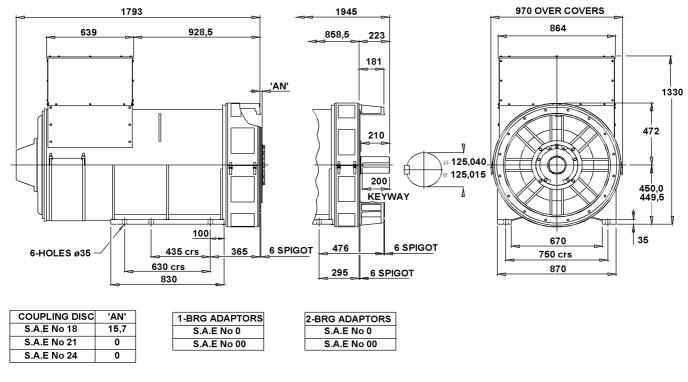
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines.



Winding 312 / 0.8 Power Factor

RATINGS

Class - Temp Rise	e C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	°°C
50Hz Star (V	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
kVA	1715	1770	1770	1735	1845	1900	1900	1865	1920	1980	1980	1940	1975	2035	2035	1995
k₩	1372	1416	1416	1388	1476	1520	1520	1492	1536	1584	1584	1552	1580	1628	1628	1596
Efficiency (%)	96.3	96.3	96.4	96.5	96.1	96.2	96.2	96.4	96.0	96.1	96.2	96.3	95.9	96.0	96.1	96.2
kW Inpu	1425	1470	1469	1438	1536	1580	1580	1548	1600	1648	1647	1612	1648	1696	1694	1659
																
60Hz Star (V	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
kVA	1935	2055	2100	2140	2070	2210	2255	2300	2155	2300	2345	2395	2215	2365	2415	2465
k٧	1548	1644	1680	1712	1656	1768	1804	1840	1724	1840	1876	1916	1772	1892	1932	1972
Efficiency (%	96.3	96.3	96.4	96.4	96.2	96.2	96.3	96.3	96.1	96.1	96.2	96.3	96.1	96.1	96.1	96.2
kW Inpu	1607	1707	1743	1776	1721	1838	1873	1911	1794	1915	1950	1990	1844	1969	2010	2050

DIMENSIONS

Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

© 2004 Newage International Limited. Reprinted with permission of N.I. only. Printed in England.

QSK23-G3

> Specification sheet

Our energy working for you.™

Description

The QSK23 is an in-line 6 cylinder engine with a 23 litre displacement. This Quantum series utilizes sophisticated electronics and premium engineering to provide outstanding performance levels, reliability and versatility for Standby, Prime and Continuous Power applications.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

The QSK23 uses the Cummins High Pressure Injection (HPI) PT full authority electronic fuel system. The HPI PT fuel system is managed by a G-Drive Governor Control System (GCS) controller, which is provided for off-engine mounting in the genset control panel. The Quantum Control has a specific fuel system board to interface with the HPI-PT fuel system and provides an Engine Protection package giving greater customer flexibility and cost effective alternatives in the control design and the benefits of Full Authority electronic control.

CTT (Cummins Turbo Technologies) HX82 turbo-charging utilizes exhaust energy with greater efficiency for improved emissions and fuel consumption.

Charge Air Cooling - QSK23 engine requires the use of an Airto-Air heat exchanger or Charge-Air-Cooler (CAC) to reduce intake manifold temperature and to meet the lower emissions requirements.

CoolPac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gross Engine Output Net Engine Output				Typical Generator Set Output							
Standby	Prime	Base	Standby	Prime	Base	ase Standby (ESP)			e (PRP)	Base (COP)	
kWm/BHP				kWm/BHP			kVA	kWe	kVA	kWe	kVA
768/1030	701/940	537/720	739/991	682/915	517/693	720	900	648	810	491	614

1800 rpm (60 Hz Ratings)

Gross Engine Output Net Engine Output				Typical Generator Set Output							
Standby	Prime	Base	Standby	Prime	Base Standby (ESP)			Prime	e (PRP)	Base (COP)	
	kWm/BHP kWm/BHP			kWe	kVA	kWe	kVA	kWe	kVA		
895/1200	809/1085	652/875	857/1149	776/1041	621/833	800	1000	727	909	583	729

General Engine Data

Туре	4 cycle, Turbocharged
Bore mm	170
Stroke mm	170
Displacement Litre	23.1
Cylinder Block	Cast iron, 6 cylinder
Battery Charging Alternator	35A
Starting Voltage	24V
Fuel System	Direct injection Cummins HPI
Fuel Filter	Spin on fuel filters with water separator
Lube Oil Filter Type(s)	Spin on full flow filter
Lube Oil Capacity (I)	103
Flywheel Dimensions	SAE 0

Coolpac Performance Data

Cooling System Design	Air-air charge cooled	
Coolant Ratio	50% ethylene glycol; 50%	% water
Total Coolant Capacity (I)	110	
Limiting Ambient Temp (°C)**	50.9 (50Hz)	55.0 (60Hz)
Fan Power (kWm)	14.4 (50Hz)	24.2 (60Hz)
Cooling System Air Flow (m ³ /s)**	13.5 (50Hz)	16.6 (60Hz)
Air Cleaner Type	Dry replaceable element	with restriction indicator

** @ 13 mm H²0

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
2976	1656	1964	3245

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph					
Standby Po	Standby Power								
100	768	1030	178	46.9					
Prime Pow	er								
100	701	940	161	42.5					
75	526	705	121	32.0					
50	351	470	85	22.4					
25	175	235	46	12.2					
Continuous Power									
100	537	720	125	33.1					

Cummins G-Drive Engines

Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

Fuel Consumption 1800 (60 Hz)

BHP

1200

1085

814

543

271

875

kWm

895

809

607

405

202

653

%

Standby Power 100

Prime Power 100

75

50

25

Continuous Power 100

North America 1400 73rd Avenue N.E.

L/ph

212

189

139 97

56

149

US gal/ph

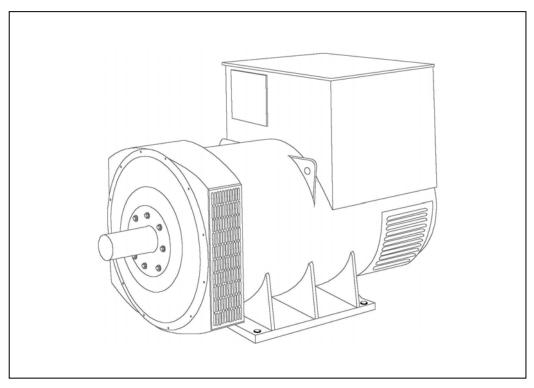
56.1

49.8 36.7

25.7

14.7

39.4


Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

©2013 | Cummins G-Drive Engines | Specifications Subject to Change Without Notice | Cummins is a registered trademark of Cummins Inc. (08/13) (GDSS133a)

HCI634G - Technical Data Sheet

HCI634G SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

MX321 AVR - STANDARD

This sophisticated Automatic Voltage Regulator (AVR) is incorporated into the Stamford Permanent Magnet Generator (PMG) system and is fitted as standard to generators of this type.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained overexcitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

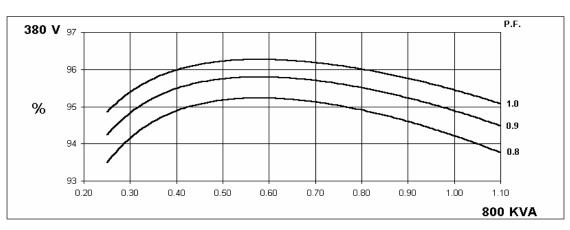
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

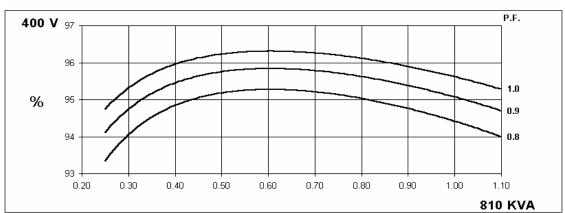
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

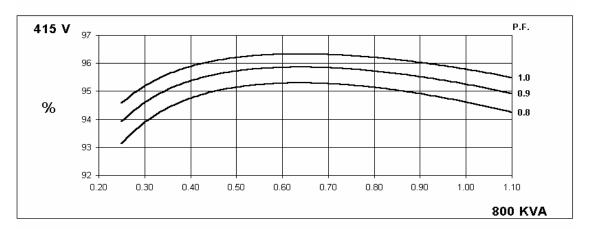
Front cover drawing typical of product range.

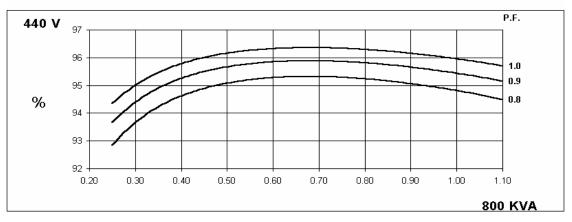
HCI634G

		HCI634G	STAMFURD				
		WINDING 312					
CONTROL SYSTEM	SEPARATI	ELY EXCITED BY P.M.G.					
A.V.R.	MX321						
VOLTAGE REGULATION	± 0.5 %	With 4% ENGINE GOVERNING					
SUSTAINED SHORT CIRCUIT	REFER TC	SHORT CIRCUIT DECREMENT CUR	VES (page 7)				
INSULATION SYSTEM		CLA	SS H				
PROTECTION		IP	23				
RATED POWER FACTOR		0.	8				
STATOR WINDING		DOUBLE L	AYER LAP				
WINDING PITCH		TWO T	HIRDS				
WINDING LEADS		6	3				
STATOR WDG. RESISTANCE		0.003 Ohms PER PHASE AT 22°C STAR CONNECTED					
ROTOR WDG. RESISTANCE		1.75 Ohm	s at 22°C				
EXCITER STATOR RESISTANCE		17 Ohms at 22°C					
EXCITER ROTOR RESISTANCE		0.079 Ohms PER	PHASE AT 22°C				
R.F.I. SUPPRESSION	BS EI	N 61000-6-2 & BS EN 61000-6-4,VDE 0	875G, VDE 0875N. refer to factory for others				
WAVEFORM DISTORTION		NO LOAD < 1.5% NON-DISTORTING	G BALANCED LINEAR LOAD < 5.0%				
MAXIMUM OVERSPEED		2250 R	ev/Min				
BEARING DRIVE END		BALL. 62	224 (ISO)				
BEARING NON-DRIVE END		BALL. 63	17 (ISO)				
		1 BEARING	2 BEARING				
WEIGHT COMP. GENERATOR		1965 kg	1989 kg				
WEIGHT WOUND STATOR		934 kg	934 kg				
WEIGHT WOUND ROTOR		814 kg	766 kg				
WR ² INERTIA		18.3482 kgm ²	17.8009 kgm ²				
SHIPPING WEIGHTS in a crate		2023kg	2029kg				
PACKING CRATE SIZE		183 x 92 x 140(cm)	183 x 92 x 140(cm)				
		50 Hz	60 Hz				

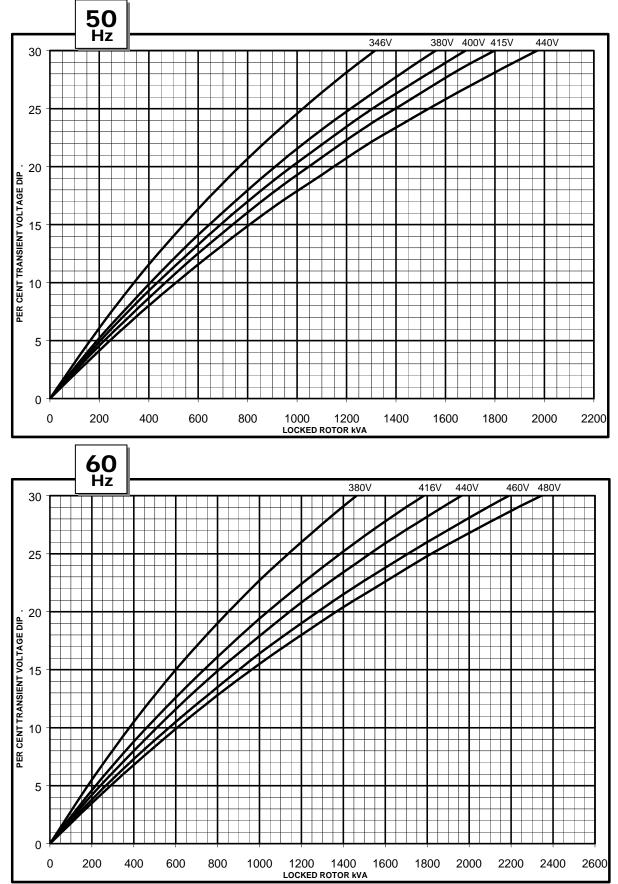

TAORING ORATE DIZE	100 x 02 x 140(011)				100 x 02 x 140(011)				
		50	Hz		60 Hz				
TELEPHONE INTERFERENCE		THF	<2%		TIF<50				
COOLING AIR		1.614 m³/se	ec 3420 cfm			1.961 m ³ /se	c 4156 cfm		
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277	
VOLTAGE DELTA	220	230	240	254	240	254	266	277	
kVA BASE RATING FOR REACTANCE VALUES	800	800	800	800	875	925	963	1000	
Xd DIR. AXIS SYNCHRONOUS	3.14	2.83	2.63	2.34	3.53	3.34	3.18	3.03	
X'd DIR. AXIS TRANSIENT	0.25	0.23	0.21	0.19	0.28	0.26	0.25	0.24	
X"d DIR. AXIS SUBTRANSIENT	0.18	0.16	0.15	0.13	0.21	0.20	0.19	0.18	
Xq QUAD. AXIS REACTANCE	1.88	1.70	1.58	1.40	2.10	1.98	1.89	1.80	
X"q QUAD. AXIS SUBTRANSIENT	0.21	0.19	0.18	0.16	0.24	0.23	0.22	0.21	
XL LEAKAGE REACTANCE	0.10	0.09	0.08	0.07	0.12	0.11	0.10	0.10	
X2 NEGATIVE SEQUENCE	0.22	0.20	0.19	0.17	0.24	0.23	0.22	0.21	
X0 ZERO SEQUENCE	0.03	0.03	0.03	0.02	0.03	0.03	0.03	0.03	
REACTANCES ARE SATURATED VALUES ARE PER UNIT AT RATING AND VOL						ND VOLTAG	E INDICATE	D	
T'd TRANSIENT TIME CONST.	0.185								
T"d SUB-TRANSTIME CONST.	0.025								
T'do O.C. FIELD TIME CONST.	2.35								
Ta ARMATURE TIME CONST.		0.04							
SHORT CIRCUIT RATIO				1/>	٢d				




HCI634G

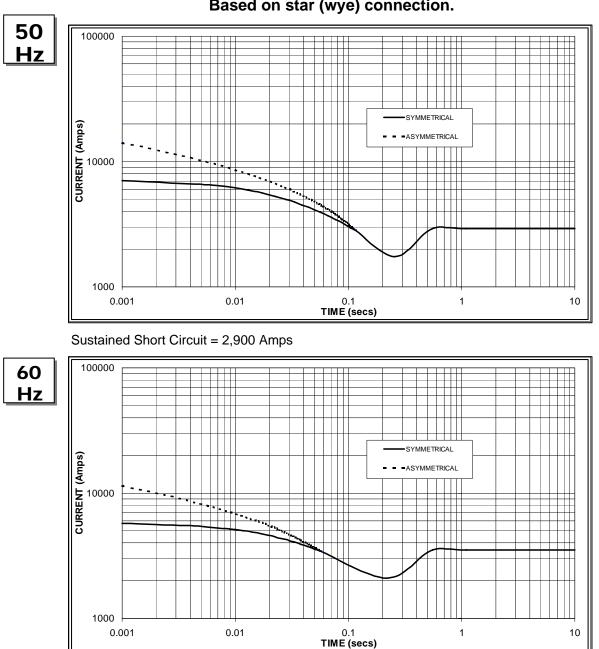

Winding 312

THREE PHASE EFFICIENCY CURVES



STAMFORD

HCI634G


Winding 312

Locked Rotor Motor Starting Curve

HCI634G

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 3,500 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	x 1.00
400v	X 1.07	440v	x 1.06
415v	X 1.12	460v	x 1.12
440v	X 1.18	480v	x 1.17
The sustaine	d current val	ua is constan	t irrespective

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

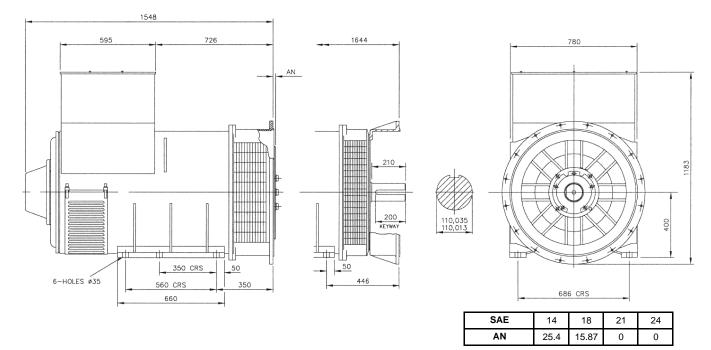
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For Delta connection multiply the Curve current value by 1.732

HCI634G



Winding 312 0.8 Power Factor

RATINGS

Class	s - Temp Rise	Co	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40)°C	St	andby -	163/27	″°C
50 Hz	Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	750	760	750	750	800	810	800	800	820	830	820	820	850	860	850	850
	kW	600	608	600	600	640	648	640	640	656	664	656	656	680	688	680	680
1	Efficiency (%)	94.5	94.6	94.8	95.0	94.2	94.4	94.6	94.8	94.1	94.3	94.5	94.7	93.9	94.2	94.4	94.6
	kW Input	635	643	633	632	679	686	677	675	697	704	694	693	724	730	720	719
0.0	Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
60 Hz	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	813	844	888	913	875	925	963	1000	913	969	1008	1046	950	1000	1044	1088
	kW	650	675	710	730	700	740	770	800	730	775	806	837	760	800	835	870
	Efficiency (%)	94.6	94.7	94.8	94.8	94.4	94.5	94.5	94.6	94.2	94.3	94.4	94.4	94.1	94.2	94.3	94.3
	kW Input		713	749	770	742	783	815	846	775	822	854	886	808	849	886	923

DIMENSIONS

STAMFORD

Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

NTA855-G4

> Specification sheet

Our energy working for you.™

The Cummins NT-Series engines have been service proven through millions of hours of operation in some of the world's most demanding applications. The 14 litre, six-cylinder NTA855 has been engineered to handle higher injection pressures, with redesigned overhead arrangement, pistons, crankshaft and camshaft. A gear train with high contact ratio spur gears also eliminates unwanted thrust loads and reduces noise.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

Cylinder Block - Alloy cast iron with removable wet liners.

Cylinder Heads - Alloy cast iron. Each head serves two cylinders. Drilled fuel supply and return lines. Valve seat inserts are replaceable and corrosion resistant. Valve and crosshead guides are replaceable.

Cylinder Liners - Replaceable wet liners dissipate heat faster than dry liners and are easily replaced without reboring the block.

Fuel System - Cummins PT[™] self adjusting system. Integral dual flyweight governor provides overspeed protection independent of main governor. Camshaft actuated fuel injectors give accurate metering and timing. Dual spin-on fuel filters.

Coolpac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

Gros	s Engine Ou	utput	Net Engine Output				Тур	oical Gene	rator Set O	utput	
Standby	Prime	Base	Standby	Standby Prime Base			Standby (ESP) Prime (PRP)			Base (COP)	
	kWm/BHP			kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA
351/471	317/425	272/365	337/451	307/411	262/351	320	400	292	365	245	306

1800 rpm (60 Hz Ratings)

1500 rpm (50 Hz Ratings)

Gros	ss Engine Ou	utput	Net Engine Output			Typical Generator Set Out				utput	
Standby	Prime	Base	Standby Prime Base			Standby	by (ESP) Prime (PRP)			Base (COP)	
	kWm/BHP			kWm/BHP			kVA	kWe	kVA	kWe	kVA
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

General Engine Data

4 cycle, in-line, Turbo Charged
140 mm (5.5 in.)
152 mm (6.0 in.)
14.0 litre (855 in.3)
Cast iron, 6 cylinder
55 amps
24 volt, negative ground
Direct injection
Spin-on fuel filters with water separator
Spin-on full flow filter
38.6
1/14

Coolpac Performance Data

Cooling System Design	Jacket Water After Cooled
Coolant Ratio	50% ethylene glycol; 50% water
Coolant Capacity (I)	45.0
Limiting Ambient Temp.**	54.7
Fan Power	11.6
Cooling System Air Flow (m ³ /s)**	7.6
Air Cleaner Type	Dry replaceable element with restriction indicator
** @ 13 mm H ² 0	•

@ 13 mm H²0

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
2055	990	1535	1410

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph		
Standby Power						
100	351	471	84	21.8		
Prime Power						
100	317	425	76	19.8		
75	238	319	57	14.8		
50	159	213	39	10.1		
25	79	106	21	5.5		
Continuous Power						
100	272	365	65	16.9		

Cummins G-Drive Engines

Asia Pacific

10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

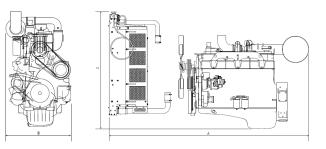
Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):


Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

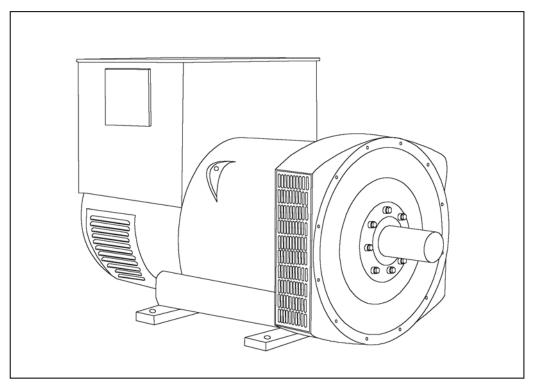
Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Fuel Consumption 1800 (60 Hz)

%	kWm	BHP	L/ph	US gal/ph			
Standby Power							
100	N/A	N/A	N/A	0.0			
Prime Power							
100	N/A	N/A	N/A	0.0			
75	N/A	N/A	N/A	0.0			
50	N/A	N/A	N/A	0.0			
25	N/A	N/A	N/A	0.0			
Continuous Power							
100	N/A	N/A	N/A	0.0			

Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

North America 1400 73rd Avenue N.E.


Minneapolis, MN 55432 USA Phone 1 763 574 5000

USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

HCI 434E/444E - Technical Data Sheet

HCI434E/444E SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

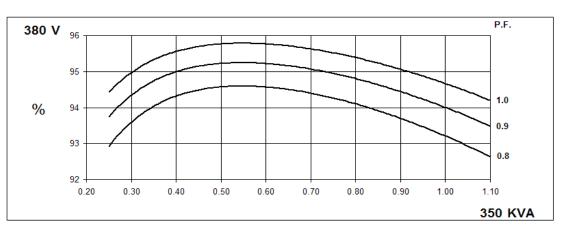
QUALITY ASSURANCE

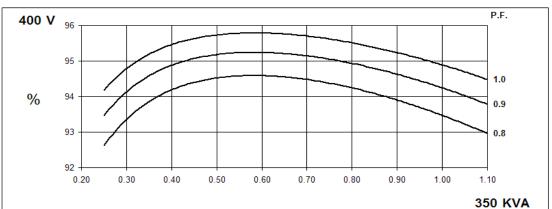
Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

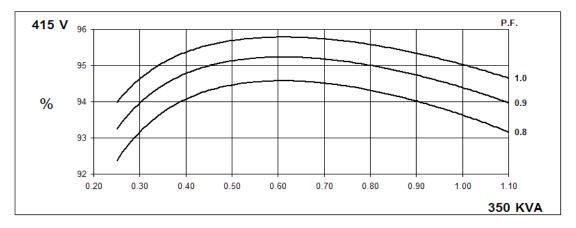
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

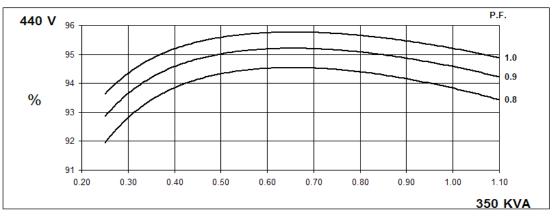
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

Front cover drawing typical of product range.

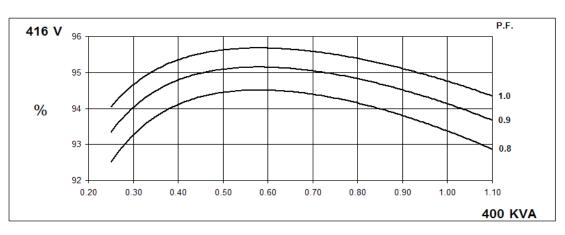

WINDING 311

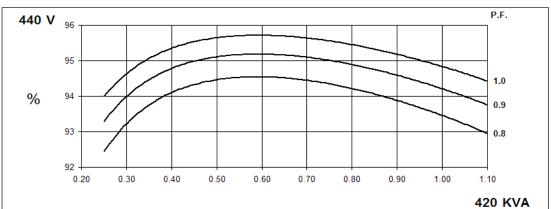

CONTROL SYSTEM	SEPARATE		D BY P.M.G).					
A.V.R.	MX321	MX341							
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN		FRNING				
SUSTAINED SHORT CIRCUIT		SHORT CI				7)			
	KLFLK IO	SHOKT CI			οκνέο (μαί	je /)			
CONTROL SYSTEM	SELF EXC	TED							
A.V.R.	AS440								
VOLTAGE REGULATION	± 1.0 %	± 1.0 % With 4% ENGINE GOVERNING							
SUSTAINED SHORT CIRCUIT	WILL NOT	ILL NOT SUSTAIN A SHORT CIRCUIT							
INSULATION SYSTEM				CLA	SS H				
PROTECTION				IP	23				
RATED POWER FACTOR				0	.8				
STATOR WINDING				DOUBLE L	AYER LAP				
WINDING PITCH					HIRDS				
WINDING LEADS					2				
		0.000.01			_				
STATOR WDG. RESISTANCE		0.009 Or	ms PER PH	-		STAR CON	NECTED		
ROTOR WDG. RESISTANCE				1.19 Ohm					
EXCITER STATOR RESISTANCE				18 Ohms					
EXCITER ROTOR RESISTANCE			0.068	Ohms PER	PHASE AT	22°C			
R.F.I. SUPPRESSION	BS EN 6	1000-6-2 &	BS EN 6100	0-6-4,VDE ()875G, VDE	0875N. refe	er to factory	for others	
WAVEFORM DISTORTION	N	IO LOAD < [^]	1.5% NON-I	DISTORTIN	G BALANCE	ED LINEAR	LOAD < 5.0	%	
MAXIMUM OVERSPEED				2250 F	Rev/Min				
BEARING DRIVE END				BALL. 63	317 (ISO)				
BEARING NON-DRIVE END				BALL. 63	314 (ISO)				
		1 BEA	RING			2 BEA	ARING		
WEIGHT COMP. GENERATOR		102	4 kg			103	0 kg		
WEIGHT WOUND STATOR) kg) kg		
WEIGHT WOUND ROTOR) kg				7 kg		
			1 kgm ²				l3 kgm ²		
SHIPPING WEIGHTS in a crate PACKING CRATE SIZE			5 kg x 107(cm)		1100 kg 155 x 87 x 107(cm)				
			Hz				. ,		
TELEPHONE INTERFERENCE			<2%		60 Hz TIF<50				
COOLING AIR		0.8 m ³ /sec	1700 cfm			0.99 m ³ /se	c 2100 cfm		
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277	
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138	
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138	
kVA BASE RATING FOR REACTANCE VALUES	350	350	350	350	400	420	440	440	
Xd DIR. AXIS SYNCHRONOUS	3.01	2.71	2.52	2.24	3.47	3.26	3.12	2.87	
X'd DIR. AXIS TRANSIENT	0.20	0.18	0.17	0.15	0.21	0.20	0.19	0.17	
X"d DIR. AXIS SUBTRANSIENT	0.14	0.13	0.12	0.11	0.15	0.14	0.13	0.12	
Xq QUAD. AXIS REACTANCE	2.58	2.33	2.16	1.92	2.92	2.74	2.63	2.41	
X"q QUAD. AXIS SUBTRANSIENT	0.36	0.32	0.30	0.27	0.41	0.38	0.37	0.34	
XL LEAKAGE REACTANCE	0.07	0.06	0.06	0.05	0.08	0.08	0.07	0.07	
X2 NEGATIVE SEQUENCE	0.24	0.24 0.22 0.20 0.18 0.28 0.26 0.25 0.23						0.23	
X0ZERO SEQUENCE	0.10	0.09	0.08	0.07	0.10	0.09	0.09	0.08	
REACTANCES ARE SATURA	TED	VAL	UES ARE F			ND VOLTA	GE INDICA	ΓED	
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.	0.08s 0.019s								
T'do O.C. FIELD TIME CONST.	1.7s								
Ta ARMATURE TIME CONST.	0.018s								
SHORT CIRCUIT RATIO				1/	Xd				

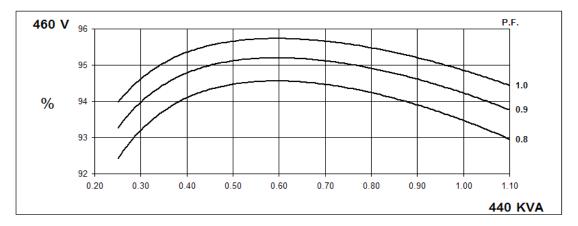

50

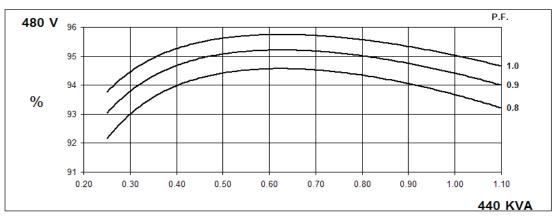

Hz

Winding 311

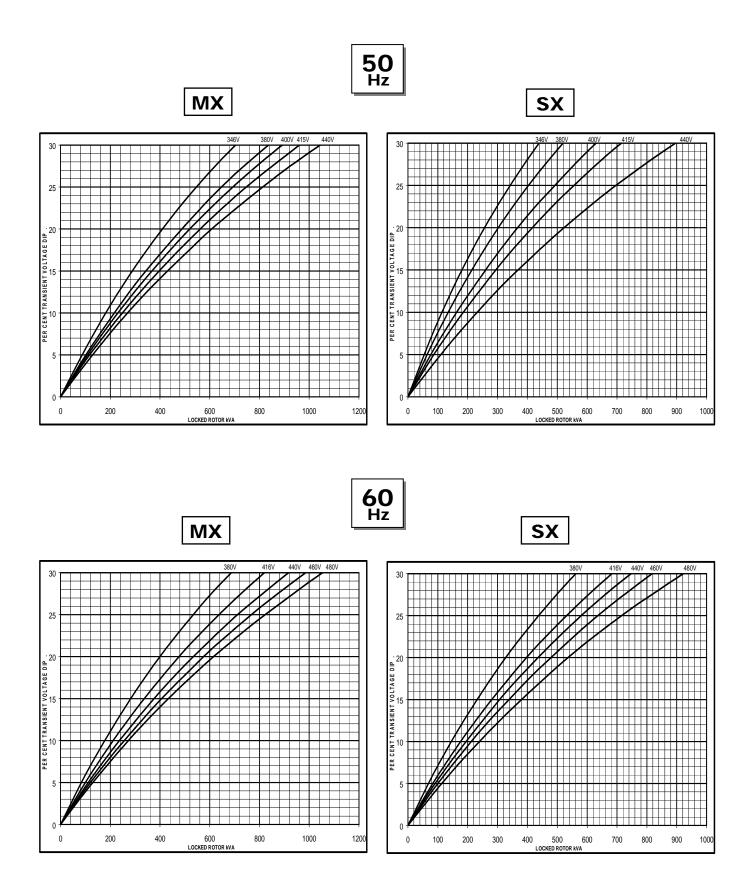


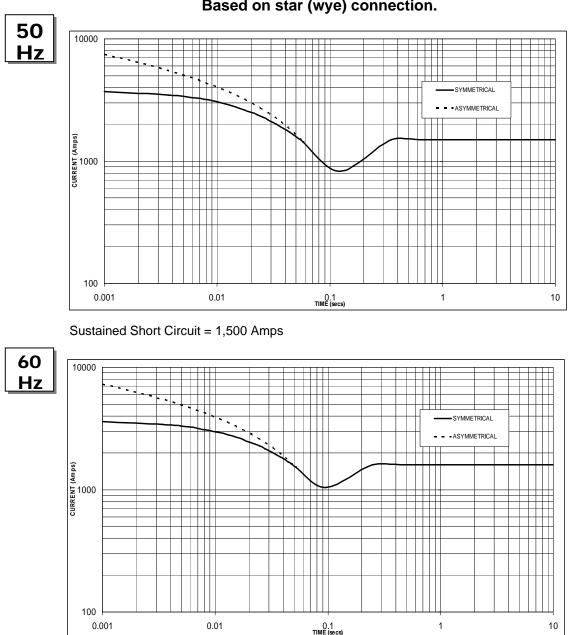



60


Hz

Winding 311




Winding 311

Locked Rotor Motor Starting Curve

HCI434E

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 1,600 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	<u>60Hz</u>				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	X 1.00			
400v	X 1.05	440v	X 1.06			
415v	X 1.10	460v	X 1.10			
440v	440v X 1.16		X 1.15			

The sustained current value is constant irrespective of voltage level

Note 2

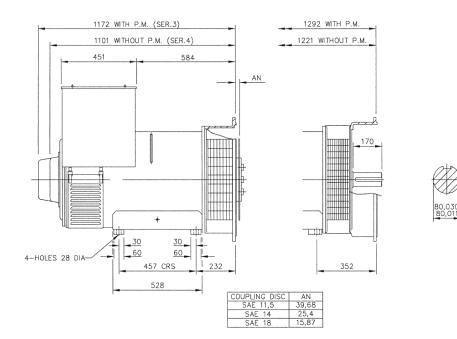
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

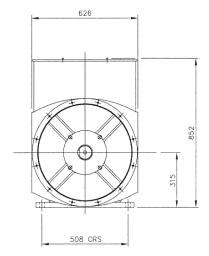
	3-phase	2-phase L-L	1-phase L-N					
Instantaneous	x 1.00	x 0.87	x 1.30					
Minimum	x 1.00	x 1.80	x 3.20					
Sustained	x 1.00	x 1.50	x 2.50					
Max. sustained duration	10 sec.	5 sec.	2 sec.					
All other times are unchanged								

All other times are

Note 3

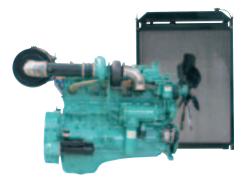
Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :




Winding 311 / 0.8 Power Factor

	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
Hz	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	320	320	320	320	350	350	350	350	370	370	370	370	380	400	380	380
	kW	256	256	256	256	280	280	280	280	296	296	296	296	304	320	304	304
	Efficiency (%)	93.6	93.8	94.0	94.1	93.2	93.5	93.6	93.8	92.9	93.2	93.4	93.6	92.7	92.7	93.2	93.5
	kW Input	274	273	272	272	300	299	299	299	319	318	317	316	328	345	326	325
										-							
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	365	385	400	400	400	420	440	440	420	445	460	460	435	455	475	475
	kW	292	308	320	320	320	336	352	352	336	356	368	368	348	364	380	380
	Efficiency (%)	93.8	93.8	93.9	94.0	93.4	93.5	93.5	93.7	93.1	93.2	93.2	93.5	92.9	93.0	93.1	93.3
	kW Input	311	328	341	340	343	359	376	376	361	382	395	394	375	391	408	407

RATINGS


DIMENSIONS

STAMFORD Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

NT855-G6

> Specification sheet

Our energy working for you.™

Description

The Cummins NT-Series engines have been service proven through millions of hours of operation in some of the world's most demanding applications. The 14 litre, six-cylinder NT855 has been engineered to handle higher injection pressures, with redesigned overhead arrangement, pistons, crankshaft and camshaft. A gear train with high contact ratio spur gears also eliminates unwanted thrust loads and reduces noise.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

Cylinder Block - Alloy cast iron with removable wet liners.

Cylinder Heads - Alloy cast iron. Each head serves two cylinders. Drilled fuel supply and return lines. Valve seat inserts are replaceable and corrosion resistant. Valve and crosshead guides are replaceable.

Cylinder Liners - Replaceable wet liners dissipate heat faster than dry liners and are easily replaced without reboring the block.

Fuel System - Cummins PT[™] self adjusting system. Integral dual flyweight governor provides overspeed protection independent of main governor. Camshaft actuated fuel injectors give accurate metering and timing. Dual spin-on fuel filters.

Coolpac Integrated Design - products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz) Ratings

Gross Engine Output Net Engine Output				Typical Generator Set Output								
Standby	Prime	Base	Standby Prime Base			Standby (ESP) Prin			Prime (PRP)		Base (COP)	
	kWm/BHP kWm/BHP			kWe	kVA	kWe	kVA	kWe	kVA			
310/416	280/375	231/310	310/415	280/375	231/309	280	350	256	320	207	259	

1800 rpm (60 Hz) Ratings

Gross Engine Output Net Engine Output			Typical Generator Set Output									
Standby	Prime	Base	Standby	Standby Prime Base			Standby (ESP) Prime (PF			P) Base (COP)		
	kWm/BHP kWm/BHP			kWe	kVA	kWe	kVA	kWe	kVA			
325/436	295/396	254/341	311/417 281/377 240/322		285	356	260	325	222	277		

General Engine Data

Туре	4 cycle, in-line, Turbo Charged
Bore mm	140 mm (5.5 in.)
Stroke mm	152 mm (6.0 in.)
Displacement Litre	14.0 litre (855 in. ³)
Cylinder Block	Cast iron, 6 cylinder
Battery Charging Alternator	55 amps
Starting Voltage	24 volt, negative ground
Fuel System	Direct injection
Fuel Filter	Spin-on fuel filters with water separator
Lube Oil Filter Type(s)	Spin-on full flow filter
Lube Oil Capacity (I)	38.6
Flywheel Dimensions	1/14

Coolpac Performance Data

Cooling System Design	Jacket Water
Coolant Ratio	50% ethlene glycol; 50% water
Coolant Capacity (I)	45.0
Limiting Ambient Temp.**	58.0
Fan Power	11.6
Cooling system air flow (m ³ /s)**	7.6
Air Cleaner Type	Dry replaceable element with retriction indicator

** @ 13 mm H²O

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046. AS 2789, DIN6271 and BS 5514.

Weights & Dimension

Length	Length Width		Weight (dry)		
mm	mm	mm	kg		
2055	990	1535	1410		

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph						
Standby P	ower									
100	310	416	76	19.8						
Prime Power										
100	280	375	69	17.9						
75	210	282	52	13.5						
50	140	188	36	9.4						
25	70	94	20	5.2						
Continuou	Continuous Power									
100	231	310	57	14.8						

Cummins G-Drive Engines

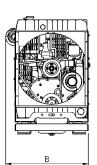
Asia Pacific

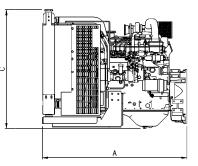
10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America

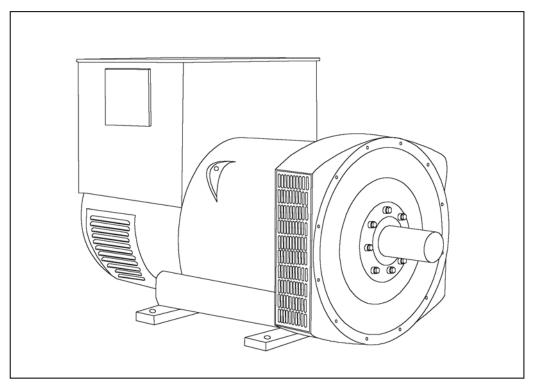
Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729


Mexico


Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

North America

1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298



Fuel Consumption 1800 (60 Hz)

%	kWm	BHP	L/ph	US gal/ph							
Standby P	ower										
100	325	436	82	21.3							
Prime Power											
100	295	396	74	19.2							
75	221	297	56	14.6							
50	148	198	40	10.4							
25	74	99	23	6.0							
Continuou	Continuous Power										
100	254	341	64	16.6							

HCI 434E/444E - Technical Data Sheet

HCI434E/444E SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

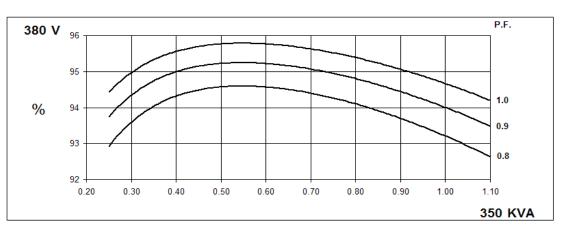
QUALITY ASSURANCE

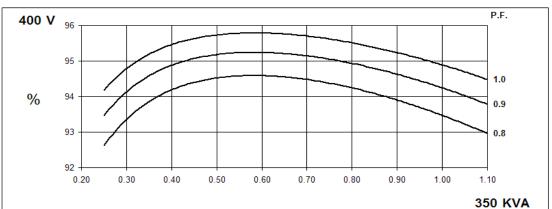
Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

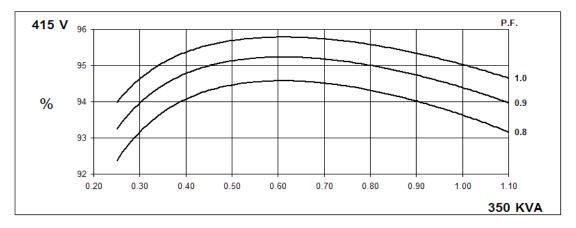
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

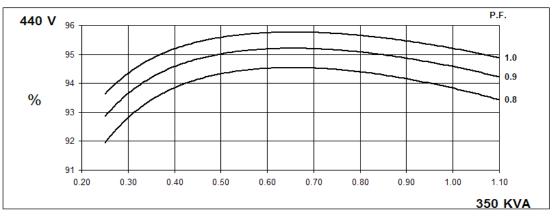
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

Front cover drawing typical of product range.

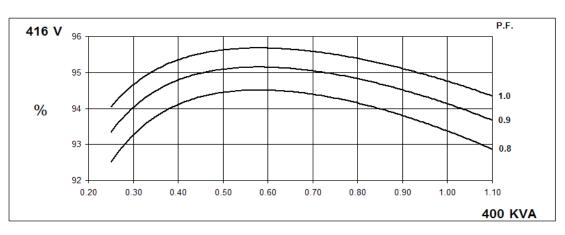

WINDING 311

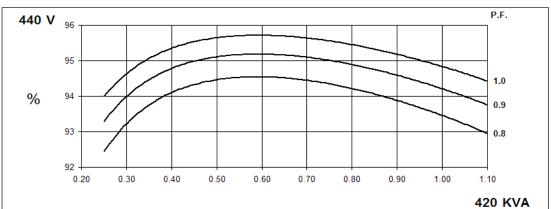

CONTROL SYSTEM	SEPARATE		D BY P.M.G).					
A.V.R.	MX321	MX341							
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN		FRNING				
SUSTAINED SHORT CIRCUIT		SHORT CI				7)			
	KLFLK IO	SHOKT CI			οκνέο (μαί	je /)			
CONTROL SYSTEM	SELF EXC	TED							
A.V.R.	AS440								
VOLTAGE REGULATION	± 1.0 %	± 1.0 % With 4% ENGINE GOVERNING							
SUSTAINED SHORT CIRCUIT	WILL NOT	ILL NOT SUSTAIN A SHORT CIRCUIT							
INSULATION SYSTEM				CLA	SS H				
PROTECTION				IP	23				
RATED POWER FACTOR				0	.8				
STATOR WINDING				DOUBLE L	AYER LAP				
WINDING PITCH					HIRDS				
WINDING LEADS					2				
		0.000.05			_				
STATOR WDG. RESISTANCE		0.009 Or	ms PER PH	-		STAR CON	NECTED		
ROTOR WDG. RESISTANCE				1.19 Ohm					
EXCITER STATOR RESISTANCE				18 Ohms					
EXCITER ROTOR RESISTANCE			0.068	Ohms PER	PHASE AT	22°C			
R.F.I. SUPPRESSION	BS EN 6	1000-6-2 &	BS EN 6100	0-6-4,VDE ()875G, VDE	0875N. refe	er to factory	for others	
WAVEFORM DISTORTION	N	IO LOAD < '	1.5% NON-I	DISTORTIN	G BALANCE	ED LINEAR	LOAD < 5.0	%	
MAXIMUM OVERSPEED				2250 F	Rev/Min				
BEARING DRIVE END				BALL. 63	317 (ISO)				
BEARING NON-DRIVE END				BALL. 63	314 (ISO)				
		1 BEA	RING			2 BEA	ARING		
WEIGHT COMP. GENERATOR		102	4 kg			103	0 kg		
WEIGHT WOUND STATOR) kg) kg		
WEIGHT WOUND ROTOR) kg				7 kg		
			1 kgm ²				l3 kgm ²		
SHIPPING WEIGHTS in a crate PACKING CRATE SIZE			5 kg x 107(cm)		1100 kg 155 x 87 x 107(cm)				
			Hz				. ,		
TELEPHONE INTERFERENCE			<2%		60 Hz TIF<50				
COOLING AIR		0.8 m ³ /sec	1700 cfm			0.99 m ³ /se	c 2100 cfm		
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277	
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138	
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138	
kVA BASE RATING FOR REACTANCE VALUES	350	350	350	350	400	420	440	440	
Xd DIR. AXIS SYNCHRONOUS	3.01	2.71	2.52	2.24	3.47	3.26	3.12	2.87	
X'd DIR. AXIS TRANSIENT	0.20	0.18	0.17	0.15	0.21	0.20	0.19	0.17	
X"d DIR. AXIS SUBTRANSIENT	0.14	0.13	0.12	0.11	0.15	0.14	0.13	0.12	
Xq QUAD. AXIS REACTANCE	2.58	2.33	2.16	1.92	2.92	2.74	2.63	2.41	
X"q QUAD. AXIS SUBTRANSIENT	0.36	0.32	0.30	0.27	0.41	0.38	0.37	0.34	
XL LEAKAGE REACTANCE	0.07	0.06	0.06	0.05	0.08	0.08	0.07	0.07	
X2 NEGATIVE SEQUENCE	0.24	0.24 0.22 0.20 0.18 0.28 0.26 0.25 0.23						0.23	
X0ZERO SEQUENCE	0.10	0.09	0.08	0.07	0.10	0.09	0.09	0.08	
REACTANCES ARE SATURA	TED	VAL	UES ARE F			ND VOLTA	GE INDICA	ΓED	
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.	0.08s 0.019s								
T'do O.C. FIELD TIME CONST.	1.7s								
Ta ARMATURE TIME CONST.	0.018s								
SHORT CIRCUIT RATIO				1/	Xd				

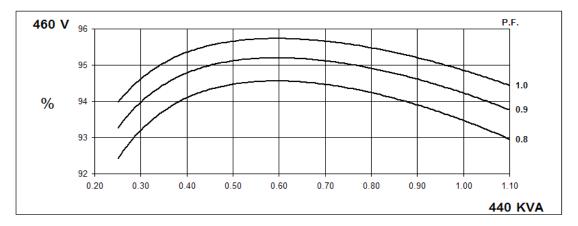

50

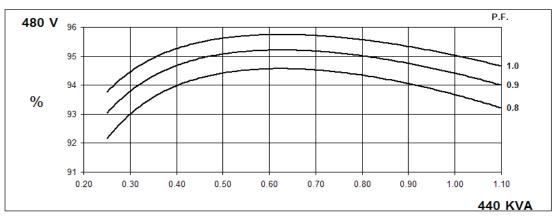

Hz

Winding 311

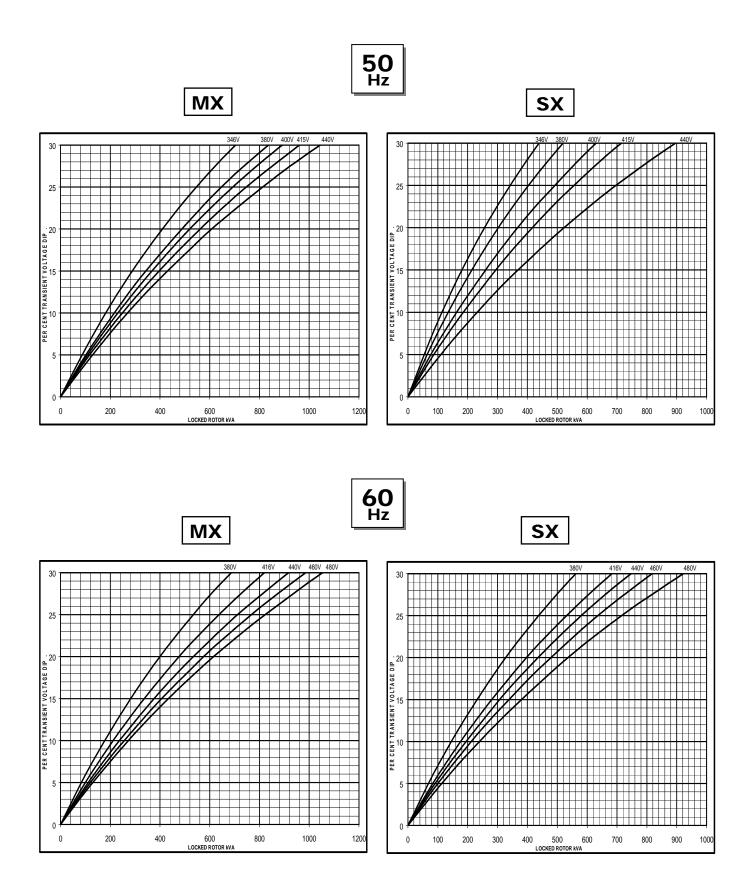


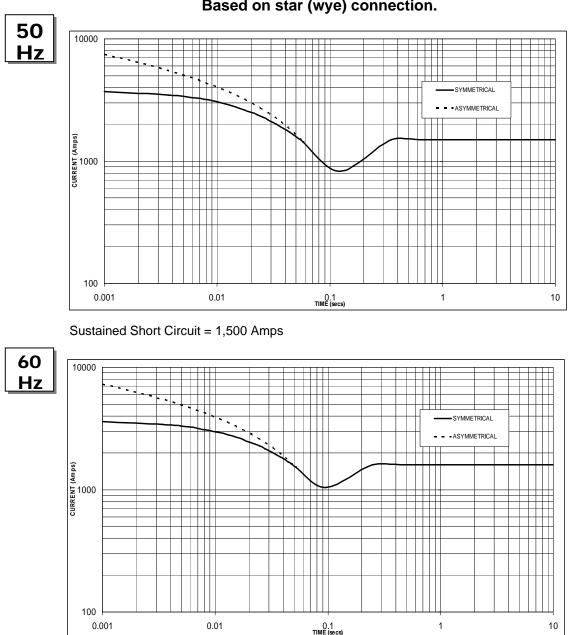



60


Hz

Winding 311




Winding 311

Locked Rotor Motor Starting Curve

HCI434E

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 1,600 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz					
Voltage	Factor	Voltage	Factor				
380v	X 1.00	416v	X 1.00				
400v	X 1.05	440v	X 1.06				
415v	X 1.10	460v	X 1.10				
440v	X 1.16	480v	X 1.15				

The sustained current value is constant irrespective of voltage level

Note 2

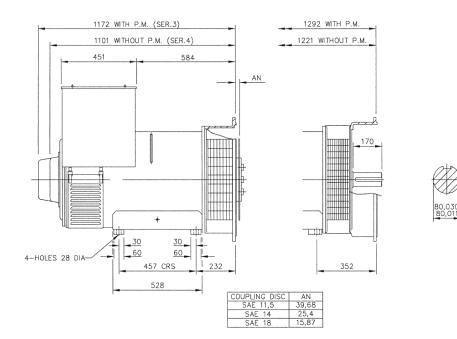
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

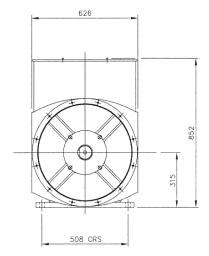
	3-phase	2-phase L-L	1-phase L-N						
Instantaneous	x 1.00	x 0.87	x 1.30						
Minimum	x 1.00	x 1.80	x 3.20						
Sustained	x 1.00	x 1.50	x 2.50						
Max. sustained duration	10 sec.	5 sec.	2 sec.						
All other times are unchanged									

All other times are

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :




Winding 311 / 0.8 Power Factor

	NATINGS NATINGS																
	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
Hz	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	320	320	320	320	350	350	350	350	370	370	370	370	380	400	380	380
	kW	256	256	256	256	280	280	280	280	296	296	296	296	304	320	304	304
	Efficiency (%)	93.6	93.8	94.0	94.1	93.2	93.5	93.6	93.8	92.9	93.2	93.4	93.6	92.7	92.7	93.2	93.5
	kW Input	274	273	272	272	300	299	299	299	319	318	317	316	328	345	326	325
										-							
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	365	385	400	400	400	420	440	440	420	445	460	460	435	455	475	475
	kW	292	308	320	320	320	336	352	352	336	356	368	368	348	364	380	380
	Efficiency (%)	93.8	93.8	93.9	94.0	93.4	93.5	93.5	93.7	93.1	93.2	93.2	93.5	92.9	93.0	93.1	93.3
	kW Input	311	328	341	340	343	359	376	376	361	382	395	394	375	391	408	407

RATINGS

DIMENSIONS

STAMFORD Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

Specification sheet

KTA50-G8

Description

The KTA50-Series benefits from years of technical development and improvement to bring customers an innovative and future proof diesel engine that keeps pace with ever changing generator set requirements.

Recognised globally for its performance under even the most severe climatic conditions, the KTA50-Series is widely acknowledged as the most robust and cost-effective diesel engine in its power range for the generator set market.

Features

Coolpac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Aftercooler – Large capacity integral aftercoolers are supplied with cooling water separate from the engine jacket. This provides cooler, denser intake air for more complete combustion and reduced engine stresses for longer life and low exhaust emissions.

Cooling System – A two pump, two loop system must be employed; i.e. the engine jacket is cooled by one radiator or heat exchanger and the aftercoolers are cooled by a separate radiator or heat exchanger.

Pistons – Pistons are dual Ni-resist, aluminium alloy, ground and shaped to compensate for thermal expansion, which assures a precise fit at all normal operating temperatures.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

Codes and standards

CE

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

1500 rpm (50 Hz Ratings)

Gross Engine Output			Net	Engine Out	Typical Generator Set Output						
Standby	Prime	Base	Standby	Prime	Base	Standby	(ESP)	Prime	(PRP)	Base (COP)	
	kWm/BHP		kWm/BHP			kWe	kVA	kWe	kVA	kWe	kVA
1429/1915	1200/1608	1100/1475	1397/1872	1168/1566	1068/1432	1340	1675	1120	1400	1025	1282

General Engine Data

Туре	4 cycle, 60° Vee, Turbocharged and Aftercooled
Bore, mm	159
Stroke, mm	159
Displacement, Litre	50.3
Cylinder Block	16-cylinder,direct injection, 4-cycle diesel engine
Battery Charging Alternator	35A
Starting Voltage	24V
Fuel System	Direct injection Cummins PT
Fuel Filter	Dual spin on paper element fuel filters with standard water separator
Lube Oil Filter Type(s)	Spin on full flow filter
Lube Oil Capacity (I)	178
Flywheel Dimensions	SAE #0

Coolpac Performance Data

Cooling System Design	2 pump - 2 loop
Coolant Ratio	50% ethylene glycol; 50% water
Coolant Capacity (I)	496
Limiting Ambient Temp.(°C)**	48
Fan Power (kWm)	32
Cooling system air flow (m ³ /s)**	28.8
Air Cleaner Type	Dry replaceable element with restriction indicator

** @13 m m H₂O

Weight and Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
3720	2000	2516	6580

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/hr	US gal/hr							
Standby Po	wer										
100	1429	1915	345	91.2							
Prime Power											
100	1200	1608	289	76.3							
75	900	1206	222	58.7							
50	600	804	155	40.9							
25	300	402	82	21.7							
Continuous	Continuous Power										
100	1100	1475	266	70.4							

Cummins G-Drive Engines

Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399 Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America

Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Mexico

Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

North America

1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 Toll-free 1 877 769 7669 Fax 1 763 574 5298

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

©2014 | Cummins G-Drive Engines | Specifications Subject to Change Without Notice | Cummins is a registered trademark of Cummins Inc. GDSS146a (10/14)

PI734B - Technical Data Sheet

PI734B SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC60034, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

DESCRIPTION

The STAMFORD PI range of synchronous ac generators are brushless with a rotating field. They are separately excited by the STAMFORD Permanent Magnet Generator (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the Automatic Voltage Regulator (AVR) to the main exciter. The main exciter output is fed to the main rotor, through a full wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

The PI range generators, complete with a PMG, are available with one of two AVRs. Each AVR has soft start voltage build up and built in protection against sustained over-excitation, which will de-excite the generator after a minimum of 8 seconds.

Underspeed protection (UFRO) is also provided on both AVRs. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a presettable level.

The **MX341 AVR** is two phase sensed with a voltage regulation of ± 1 %. (see the note on regulation).

The **MX321 AVR** is 3 phase rms sensed with a voltage regulation of 0.5% rms (see the note on regulation). The UFRO circuit has adjustable slope and dwell for controlled recovery from step loads. An over voltage protection circuit will shutdown the output device of the AVR, it can also trip an optional excitation circuit breaker if required. As an option, short circuit current limiting is available with the addition of current transformers.

Both the MX341 and the MX321 need a generator mounted current transformer to provide quadrature droop characteristics for load sharing during parallel operation. Provision is also made for the connection of the STAMFORD power factor controller, for embedded applications, and a remote voltage trimmer.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H', and meets the requirements of UL1446.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

NOTE ON REGULATION

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

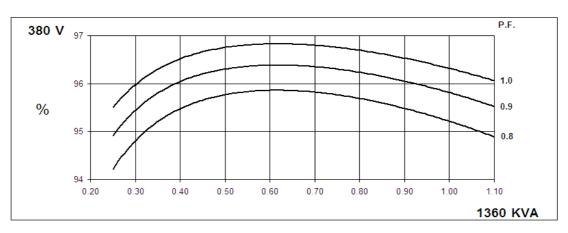
Note: Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

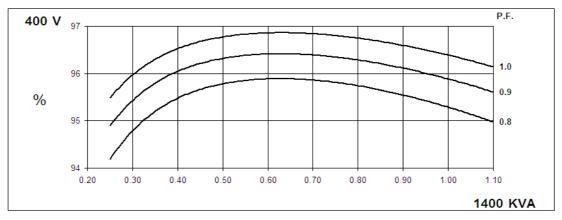
Front cover drawing is typical of the product range.

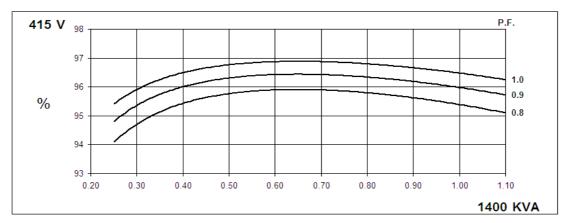
STAMFORD

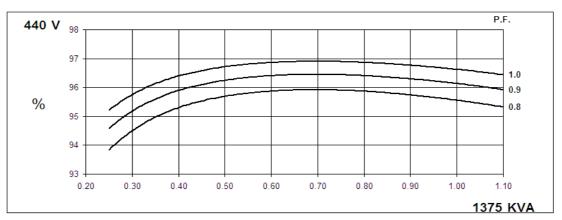
PI734B

WINDING 312

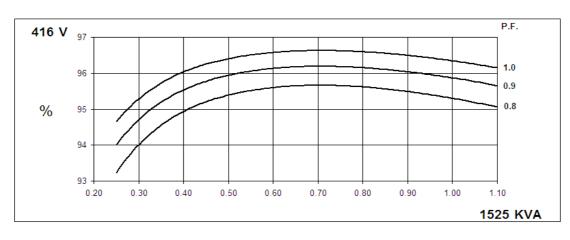

CONTROL SYSTEM SEPARATELY EXCITED BY P.M.G.											
A.V.R.	MX341	MX321									
VOLTAGE REGULATION	± 1%	± 0.5 %	With 4% EN		NING						
SUSTAINED SHORT CIRCUIT											
					- (1- 0-)						
INSULATION SYSTEM				CLAS	SS H						
PROTECTION				IP	23						
RATED POWER FACTOR		0.8									
STATOR WINDING		DOUBLE LAYER LAP									
WINDING PITCH		TWO THIRDS									
WINDING LEADS		6									
MAIN STATOR RESISTANCE		0.0	016 Ohms PE	ER PHASE A	T 22°C STAF	R CONNECTE	ED				
MAIN ROTOR RESISTANCE				1.67 Ohm	s at 22°C						
EXCITER STATOR RESISTANCE				17.5 Ohm:	s at 22°C						
EXCITER ROTOR RESISTANCE			0.04	8 Ohms PER	PHASE AT 2	2°C					
R.F.I. SUPPRESSION	BS EI	N 61000-6-2	& BS EN 610	00-6-4,VDE 0	875G, VDE 0	875N. refer to	factory for o	thers			
WAVEFORM DISTORTION		NO LOAD	< 1.5% NON-	DISTORTIN	BALANCE	D LINEAR LO	AD < 5.0%				
MAXIMUM OVERSPEED				2250 R	ev/Min						
BEARING DRIVE END				BALL. 6	228 C3						
BEARING NON-DRIVE END		BALL. 6220 C3									
		1 BE/	ARING			2 BEA	RING				
WEIGHT COMP. GENERATOR			60 kg			2710) kg				
WEIGHT WOUND STATOR		130)6 kg			1306	ð kg				
WEIGHT WOUND ROTOR			9 kg			1077	•				
WR ² INERTIA			98 kgm ²		31.7489 kgm ²						
SHIPPING WEIGHTS in a crate			33kg		2779kg						
PACKING CRATE SIZE			x 154(cm)		194 x 105 x 154(cm)						
			Hz		60 Hz						
TELEPHONE INTERFERENCE			-<2%		00 H2 TIF<50						
COOLING AIR			c 5700 cfm			3.45 m³/sec					
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277			
kVA BASE RATING FOR REACTANCE		1400	1400	1375	1525	1625	1655	1690			
Xd DIR. AXIS SYNCHRONOUS	3.50	3.26	3.02	2.64	4.25	4.04	3.77	3.53			
X'd DIR. AXIS TRANSIENT	0.21	0.20	0.18	0.16	0.26	0.25	0.23	0.22			
X"d DIR. AXIS SUBTRANSIENT	0.16	0.15	0.14	0.12	0.19	0.18	0.17	0.16			
Xq QUAD. AXIS REACTANCE	2.26	2.10	1.95	1.70	2.74	2.61	2.43	2.28			
X"q QUAD. AXIS SUBTRANSIENT	0.32	0.29	0.27	0.24	0.38	0.37	0.34	0.32			
XL LEAKAGE REACTANCE	0.04	0.04	0.03	0.03	0.05	0.05	0.04	0.04			
X2 NEGATIVE SEQUENCE	0.22	0.21	0.19	0.17	0.27	0.26	0.24	0.23			
X0 ZERO SEQUENCE	0.03	0.03	0.02	0.02	0.03	0.03	0.03	0.03			
REACTANCES ARE SATURA	ΓED	١	ALUES ARE	PER UNIT A	T RATING AI)			
T'd TRANSIENT TIME CONST.				0.1	3s						
T"d SUB-TRANSTIME CONST.				0.0							
T'do O.C. FIELD TIME CONST.				2.1							
Ta ARMATURE TIME CONST.				0.0							
SHORT CIRCUIT RATIO	L	1/Xd									

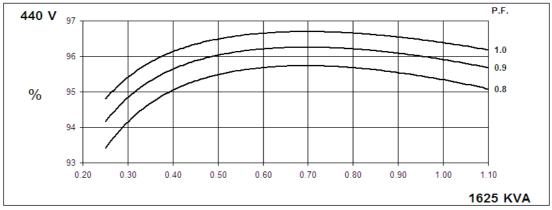


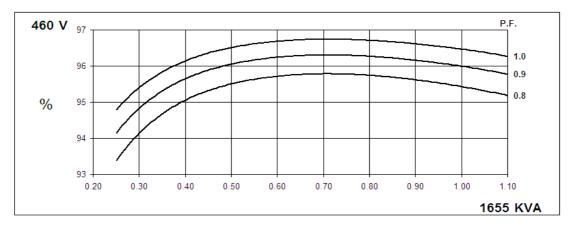

PI734B

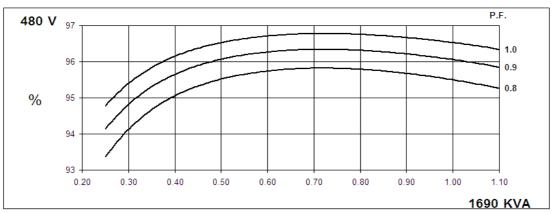


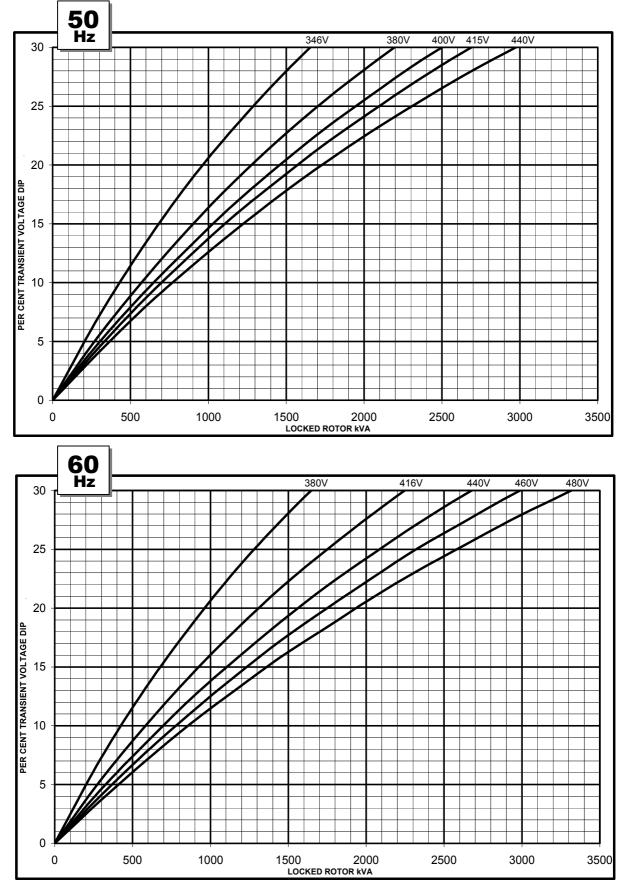
Winding 312

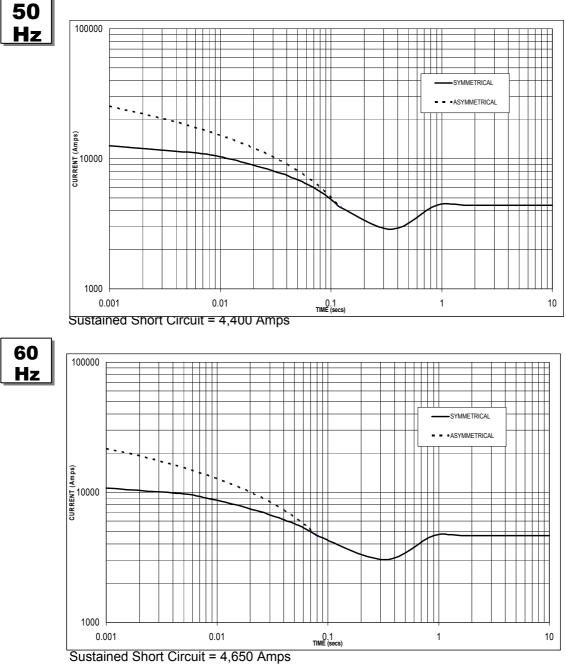







Winding 312




Winding 312

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz					
Voltage	Factor	Voltage	Factor				
380v	x 1.00	416v	x 1.00				
400v	x 1.05	440v	x 1.06				
415v	x 1.09	460v	x 1.10				
440v	x 1.16	480v	x 1.15				

The sustained current value is constant irrespective of voltage level

Note 2

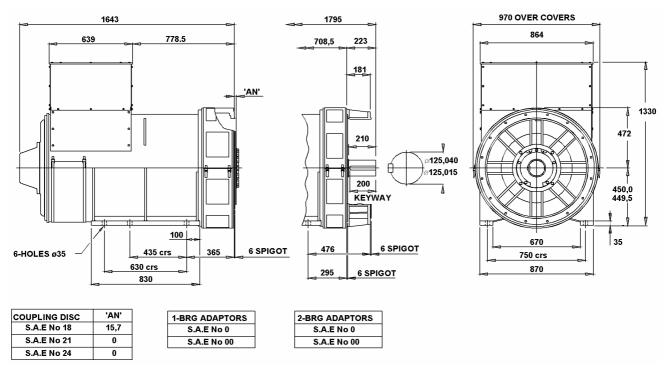
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines.



Winding 312 / 0.8 Power Factor

RATINGS

Class - Temp Rise	Co	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	°°C
50Hz Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
kVA	1265	1305	1305	1280	1360	1400	1400	1375	1415	1460	1460	1430	1455	1500	1500	1470
kW	1012	1044	1044	1024	1088	1120	1120	1100	1132	1168	1168	1144	1164	1200	1200	1176
Efficiency (%)	95.4	95.5	95.6	95.7	95.2	95.3	95.4	95.6	95.1	95.2	95.3	95.5	95.0	95.1	95.2	95.4
kW Input	1061	1093	1092	1070	1143	1175	1174	1151	1190	1227	1226	1198	1225	1262	1261	1233
r																
60Hz Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
kVA	1415	1510	1540	1575	1525	1625	1655	1690	1590	1690	1725	1760	1630	1740	1775	1810
kW	1132	1208	1232	1260	1220	1300	1324	1352	1272	1352	1380	1408	1304	1392	1420	1448
Efficiency (%)	95.4	95.5	95.6	95.6	95.3	95.3	95.4	95.5	95.2	95.2	95.3	95.4	95.1	95.2	95.3	95.3
kW Input	1187	1265	1289	1318	1280	1364	1388	1416	1336	1420	1448	1476	1371	1462	1490	1519

DIMENSIONS

Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

© 2004 Newage International Limited. Reprinted with permission of N.I. only. Printed in England.

TD_PI734B.GB_05.04_02_GB

KTA50-G3

> Specification sheet

Our energy working for you.™

Description

The KTA50-Series benefits from years of technical development and improvement to bring customers an innovative and future proof diesel engine that keeps pace with ever changing generator set requirements.

Recognised globally for its performance under even the most severe climatic conditions, the KTA50-Series is widely acknowledged as the most robust and costeffective diesel engine in its power range for the generator set market.

This engine has been built to comply with CE certification.

ISO 9001

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Coolpac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Aftercooler – Large capacity aftercoolers result in cooler, denser intake air for more efficient combustion and reduced internal stresses for longer life.

Cooling System – Gear driven centrifugal water pump. Large volume water passages provide even flow of coolant around cylinder liners, valves and injectors.

Pistons – Aluminium alloy, cam ground and barrel shaped to compensate for thermal expansion assures precise fit at operating temperatures. Grooved skirt finish provides superior lubrication. Oil cooled for rapid heat dissipation.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gros	s Engine Ou	Engine Output Net Engine Output			Typical Generator Set Output						
Standby	Prime	Base	Standby	Standby Prime Base		Standby (ESP)		Prime	(PRP)	Base (COP)	
	kWm/BHP			kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA
1227/1645	1097/1470	900/1206	1192/1598 1074/1440 877/1176		1120	1400	1020	1275	842	1052	

1800 rpm (60 Hz Ratings)

Gross Engine Output Net Engine Output			Typical Generator Set Output								
Standby	Prime	Base	Standby	tandby Prime Base		Standby (ESP)		Prime (PRP)		Base (COP)	
	kWm/BHP		kWm/BHP		kWe	kVA	kWe	kVA	kWe	kVA	
1380/1850	1220/1635	1000/1340	1328/1781 1182/1585 962/1290		1250	1610	1135	1418	924	1154	

General Engine Data

Туре	4 cycle, In line, Turbocharged and After-cooled
Bore mm	158.8
Stroke mm	158.8
Displacement Litre	50
Cylinder Block	16-cylinder, direct injection, 4-cycle diesel engine
Battery Charging Alternator	55A
Starting Voltage	24V
Fuel System	Direct injection
Fuel Filter	Dual spin on paper element fuel filters with standard water separator
Lube Oil Filter Type(s)	Spin on full flow filter
Lube Oil Capacity (I)	177
Flywheel Dimensions	SAE 0

Coolpac Performance Data

Cooling System Design	Jacket Water After Cooled					
Coolant Ratio	50% ethylene glycol; 50% water					
Coolant Capacity (I)	152.0					
Limiting Ambient Temp (℃)**	55.6 (50Hz)	51.0 (60Hz)				
Fan Power (kWm)	21.0 (50Hz)	36.0 (60Hz)				
Cooling System Air Flow (m ³ /s)**	30.3 (50Hz)	34.6 (60Hz)				
Air Cleaner Type	Dry replaceable element with restriction indicator					
** @ 10 mm H ² 0	, , ,					

** @ 13 mm H²0

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
3275	2000	2200	5900

Fuel Consumption 1500 rpm (50 Hz)

%	kWm	BHP	L/ph	US gal/ph				
Standby Po	ower							
100	1227	1645	293	77.4				
Prime Pow	er							
100	1097	1470	261	69.0				
75	822	1102	199	52.5				
50	548	735	139	36.6				
25	275	368	76	20.0				
Continuou	Continuous Power							
100	900	1206	216	57.1				

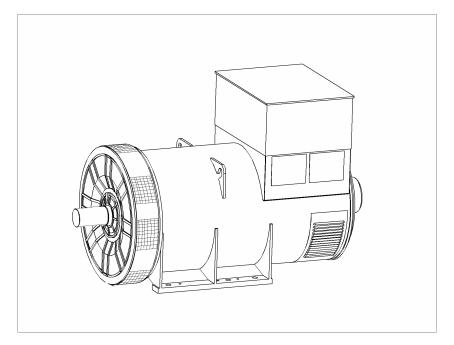
Cummins G-Drive Engines

Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399 Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902 Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

North America 1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000

Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298



Fuel Consumption 1800 rpm (60 Hz)

%	kWm	BHP	L/ph	US gal/ph
Standby Po	wer			
100	1380	1850	330	87.3
Prime Powe	er			
100	1220	1635	291	76.9
75	915	1226	222	58.7
50	610	818	157	41.6
25	305	409	89	23.6
Continuous	Power			
100	1000	1340	242	63.8

PI734A - Technical Data Sheet

PI734A SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC60034, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

DESCRIPTION

The STAMFORD PI range of synchronous ac generators are brushless with a rotating field. They are separately excited by the STAMFORD Permanent Magnet Generator (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the Automatic Voltage Regulator (AVR) to the main exciter. The main exciter output is fed to the main rotor, through a full wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

The PI range generators complete with a PMG are available with one of two AVRs. Each AVR has soft start voltage build up and built in protection against sustained over-excitation, which will de-excite the generator after a minimum of 8 seconds.

Underspeed protection (UFRO) is also provided on both AVRs. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a presettable level.

The **MX341 AVR** is two phase sensed with a voltage regulation of ± 1 %. (see the note on regulation).

The **MX321 AVR** is 3 phase rms sensed with a voltage regulation of 0.5% rms (see the note on regulation). The UFRO circuit has adjustable slope and dwell for controlled recovery from step loads. An over voltage protection circuit will shutdown the output device of the AVR, it can also trip an optional excitation circuit breaker if required. As an option, short circuit current limiting is available with the addition of current transformers.

Both the MX341 and the MX321 need a generator mounted current transformer to provide quadrature droop characteristics for load sharing during parallel operation. Provision is also made for the connection of the STAMFORD power factor controller, for embedded applications, and a remote voltage trimmer.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H', and meets the requirements of UL1446. All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

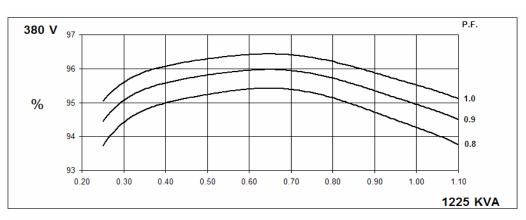
Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

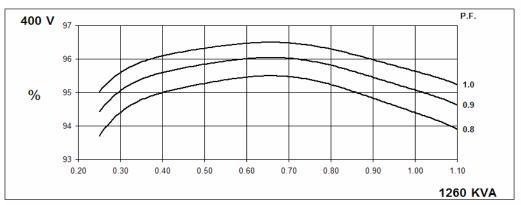
NOTE ON REGULATION

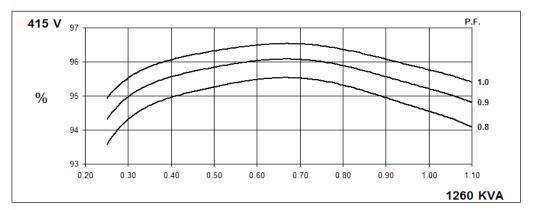
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

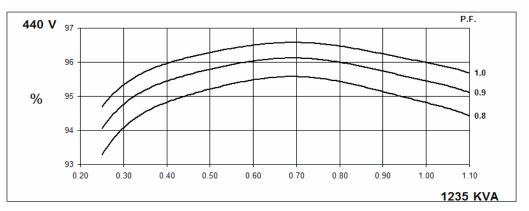
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

Front cover drawing is typical of the product range.

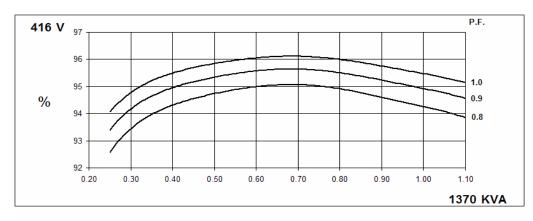

WINDING 312

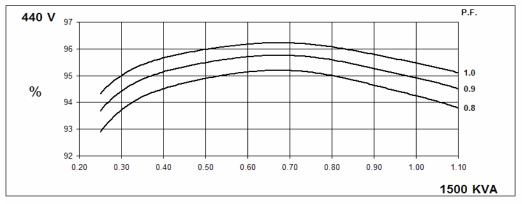

CONTROL SYSTEM	SEPARATELY EXCITED BY P.M.G.									
A.V.R.	MX341	MX321								
VOLTAGE REGULATION	± 1%	± 0.5 %	With 4% EN	GINE GOVER	NING					
SUSTAINED SHORT CIRCUIT		EFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)								
INSULATION SYSTEM				CLAS	S H					
PROTECTION				IP2	23					
RATED POWER FACTOR				0.	3					
STATOR WINDING				DOUBLE L	AYER LAP					
WINDING PITCH				TWO TI	HIRDS					
WINDING LEADS				6						
MAIN STATOR RESISTANCE		0.0	016 Ohms PE	R PHASE A	22°C STAF	R CONNECTI	ED			
MAIN ROTOR RESISTANCE				1.67 Ohms	at 22°C					
EXCITER STATOR RESISTANCE				17.5 Ohms	at 22°C					
EXCITER ROTOR RESISTANCE			0.048	3 Ohms PER	PHASE AT 2	2°C				
R.F.I. SUPPRESSION	BS EN	N 61000-6-2	& BS EN 6100	0-6-4,VDE 0	875G, VDE 0	875N. refer t	o factory for c	others		
WAVEFORM DISTORTION		NO LOAD	< 1.5% NON-	DISTORTING	BALANCE) LINEAR LO	AD < 5.0%			
MAXIMUM OVERSPEED				2250 R	ev/Min					
BEARING DRIVE END				BALL. 6						
BEARING NON-DRIVE END				BALL. 6						
		1 BE	ARING	Di LEC. O		2 BEA	RING			
WEIGHT COMP. GENERATOR			60 kg		2710 kg					
WEIGHT WOUND STATOR			06 kg		1306 kg					
			•		-					
			39 kg		1077 kg					
			98 kgm ²		31.7489 kgm ² 2779kg					
SHIPPING WEIGHTS in a crate			33kg 5 x 154(cm)			194 x 105 :	•			
PACKING CRATE SIZE							. ,			
) Hz			60				
			=<2%			TIF•				
	000/000		ec 5700 cfm	110/051	110/010	3.45 m³/sec		400/077		
VOLTAGE STAR kVA BASE RATING FOR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277		
REACTANCE VALUES	1225	1260	1260	1235	1370	1500	1510	1525		
Xd DIR. AXIS SYNCHRONOUS	3.51	3.26	3.02	2.64	4.23	4.14	3.81	3.53		
X'd DIR. AXIS TRANSIENT	0.21	0.20	0.18	0.16	0.26	0.25	0.23	0.22		
X"d DIR. AXIS SUBTRANSIENT	0.16	0.15	0.14	0.12	0.19	0.19	0.17	0.16		
Xq QUAD. AXIS REACTANCE	2.26	2.10	1.95	1.70	2.73	2.67	2.46	2.28		
X"q QUAD. AXIS SUBTRANSIENT	0.32	0.29	0.27	0.24	0.38	0.37	0.34	0.32		
X∟ LEAKAGE REACTANCE	0.04	0.04	0.03	0.03	0.05	0.05	0.04	0.04		
X2 NEGATIVE SEQUENCE	0.22	0.21	0.19	0.17	0.27	0.26	0.24	0.23		
X0 ZERO SEQUENCE	0.03	0.03	0.02	0.02	0.03	0.03	0.03	0.03		
REACTANCES ARE SATURA	TED	١	ALUES ARE	PER UNIT A)		
T'd TRANSIENT TIME CONST.				0.1						
T"d SUB-TRANSTIME CONST.				0.0						
T'do O.C. FIELD TIME CONST.				2.1						
Ta ARMATURE TIME CONST. SHORT CIRCUIT RATIO				0.0	2s					

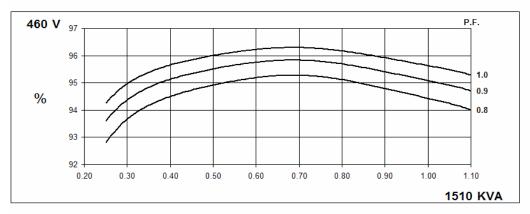


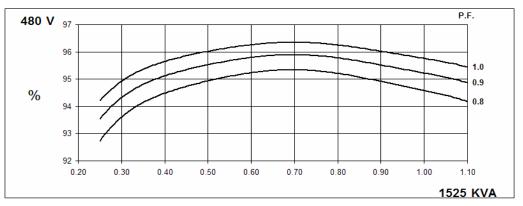


Winding 312

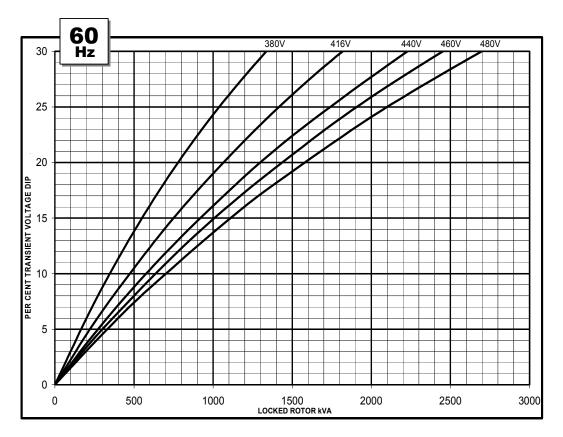


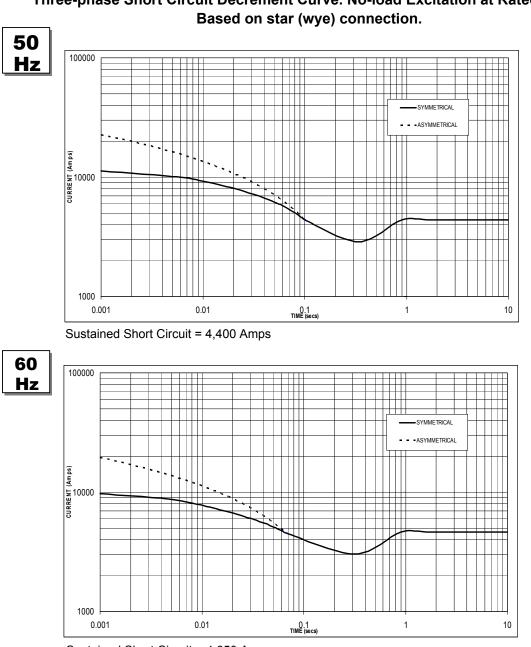





Winding 312

60 Hz




Winding 312

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed

Sustained Short Circuit = 4,650 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	x 1.00	416v	x 1.00			
400v	x 1.05	440v	x 1.06			
415v	x 1.09	460v	x 1.10			
440v	x 1.16	480v	x 1.15			

The sustained current value is constant irrespective of voltage level

Note 2

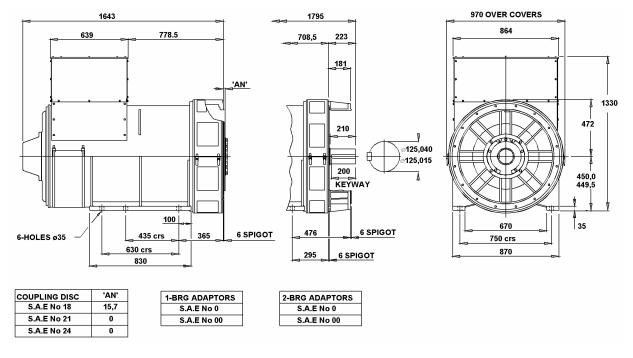
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines.



Winding 312 / 0.8 Power Factor

RATINGS

Class - Temp Rise	С	ont. F -	105/40°	°C	C	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	°°C
50Hz Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
kVA	1140	1175	1175	1150	1225	1260	1260	1235	1275	1315	1315	1290	1310	1350	1350	1325
kW	912	940	940	920	980	1008	1008	988	1020	1052	1052	1032	1048	1080	1080	1060
Efficiency (%)	94.5	94.6	94.8	95.0	94.3	94.4	94.6	94.8	94.1	94.2	94.4	94.7	94.0	94.1	94.3	94.6
kW Input	965	994	992	968	1039	1068	1066	1042	1084	1117	1114	1090	1115	1148	1145	1121
60Hz Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
kVA	1275	1395	1405	1415	1370	1500	1510	1525	1425	1560	1570	1585	1465	1605	1615	1630
kW	1020	1116	1124	1132	1096	1200	1208	1220	1140	1248	1256	1268	1172	1284	1292	1304
Efficiency (%)	94.5	94.5	94.6	94.8	94.3	94.2	94.4	94.6	94.1	94.1	94.3	94.5	94.0	94.0	94.2	94.4
kW Input	1079	1181	1188	1194	1162	1274	1280	1290	1211	1326	1332	1342	1247	1366	1372	1381

DIMENSIONS

Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

© 2005 Newage International Limited. Reprinted with permission of N.I. only. Printed in England.

TD_PI734A.GB_10.05_03_GB

KTA38-G5

Typical picture

> Specification sheet

Our energy working for you.™

Description

The KTA38-Series benefits from years of technical development and improvement to bring customers an innovative and future proof diesel engine that keeps pace with ever changing generator set requirements.

Recognized globally for its performance under even the most severe climatic conditions, the KTA38-Series is widely acknowledged as the most robust and costeffective diesel engine in its power range for the generator set market.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

Aftercooler – Large capacity after cooler results in cooler, denser intake air for more efficient combustion and reduced internal stresses for longer life.

Fuel System – Cummins exclusive low pressure PT[™] system with wear compensating pump and integral dual flyweight governor. Camshaft actuated fuel injectors give accurate metering and timing. Fuel lines are internal drilled passages in cylinder heads. Spin-on fuel filter.

Cooling System – Gear driven centrifugal water pump. Large volume water passages provide even flow of coolant around cylinder liners, valves and injectors. Bypass thermostats regulate coolant temperature. Spin-on corrosion resistors check rust and corrosion, control acidity and remove Impurities.

Cylinder Block – Alloy cast iron with removable wet liners. Cross bolt support to main bearing cap provides extra strength and stability.

Turbocharger – Cummins Turbo Technologies (CTT) exhaust gas driven turbocharger mounted at top of engine provides more power, improved fuel economy, altitude compensation, and lower smoke and noise levels.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gros	s Engine O	utput	Net	Engine Out	ut Typical Generator Set Output						
Standby	Prime	Base	Standby	Prime	Base	Standby	(ESP)	Prime	e (PRP)	Base (COP)	
	kWm/BHP			kWm/BHP		kWe	kVA	kWe	kVA	kWe kV	
970/1300	880/1180	656/880	937/1257	857/1149	633/849	880	1100	800	1000	600	750

General Engine Data

Туре	4 cycle, Turbocharged and After-cooled
Bore mm	159
Stroke mm	159
Displacement Liter	38
Cylinder Block	12-cylinder, direct injection, 4-cycle diesel engine
Battery Charging Alternator	35A
Starting Voltage	24V
Fuel System	Direct injection, EFC (Electric Fuel control) governor
Fuel Filter	Dual spin on paper element fuel filters with standard water separator
Lube Oil Filter Type(s)	Spin on full flow filter
Lube Oil Capacity (I)	140
Flywheel Dimensions	SAE 0

Coolpac Performance Data

JWAC
50% ethylene glycol; 50% water
218.5
50
20
18.9
Dry replaceable element with restriction indicator

** @ 13 mm H₂0

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
3172	1752	2004	4990

Note: Weights represent CoolPac with Light Duty Air Cleaner. See Outline drawings for weights and dimensions for Heavy Duty Air Cleaner configuration.

Fuel Consumption 1500 rpm (50 Hz)

%	kWm	BHP	L/ph	US gal/ph						
Standby Po	ower									
100	970	1300	228	60.3						
Prime Power										
100	880	1180	209	55.1						
75	660	885	161	42.5						
50	440	590	113	29.9						
25	220	295	65	17.3						
Continuous	s Power									
100	656	880	158	41.7						

Cummins G-Drive Engines

Asia Pacific
10 Toh Guan Road
#07-01
TT International Tradepark
Singapore 608838
Phone 65 6417 2388
Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902 Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.


North America

1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

HCI634J - Technical Data Sheet

SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

MX321 AVR - STANDARD

This sophisticated Automatic Voltage Regulator (AVR) is incorporated into the Stamford Permanent Magnet Generator (PMG) system and is fitted as standard to generators of this type.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

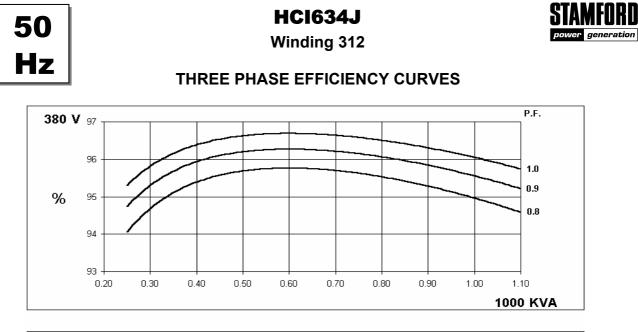
All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

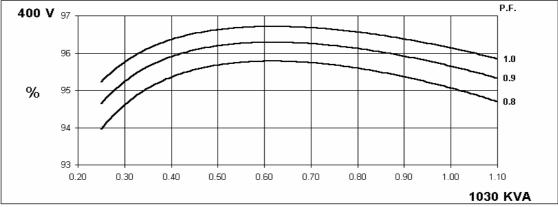
Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

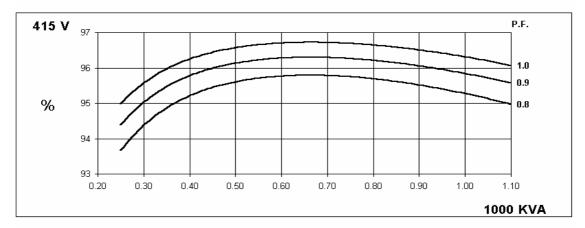
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

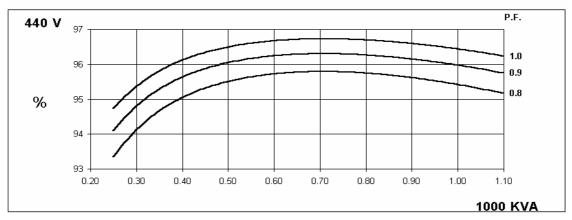
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.


Front cover drawing typical of product range.

STAMFORD

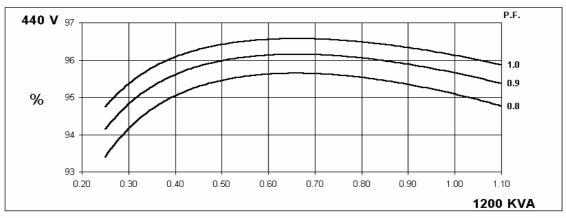

HCI634J

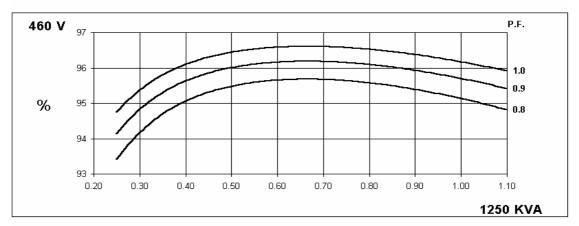

WINDING 312

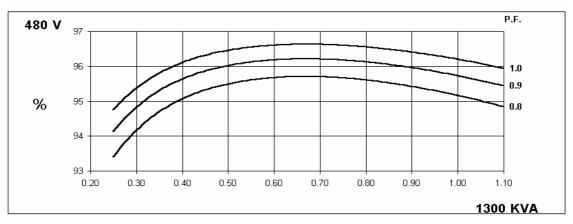

CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.							
A.V.R.	MX321									
VOLTAGE REGULATION	± 0.5 %	With 4% EN	GINE GOVER	RNING						
SUSTAINED SHORT CIRCUIT		SHORT CIRC		-	ES (page 7)					
INSULATION SYSTEM	CLASS H									
PROTECTION		IP23								
RATED POWER FACTOR		0.8								
STATOR WINDING		DOUBLE LAYER LAP								
WINDING PITCH		TWO THIRDS								
WINDING LEADS				6	;					
STATOR WDG. RESISTANCE		0.0	002 Ohms PE	R PHASE AT	22°C STAR	CONNECTE	D			
ROTOR WDG. RESISTANCE				2.09 Ohm	s at 22°C					
R.F.I. SUPPRESSION	BS E	BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE 0875N. refer to factory for oth								
WAVEFORM DISTORTION					G BALANCED					
MAXIMUM OVERSPEED				2250 R						
BEARING DRIVE END	BALL. 6224 (ISO)									
BEARING NON-DRIVE END					()					
BEARING NON-DRIVE END	BALL. 6317 (ISO) 1 BEARING 2 BEARING									
WEIGHT COMP. GENERATOR			9 kg			2300	•			
WEIGHT WOUND STATOR			0 kg			1120	•			
WEIGHT WOUND ROTOR			2 kg			916	•			
WR ² INERTIA			37 kgm ²		22.3814 kgm ²					
SHIPPING WEIGHTS in a crate		232	28kg		2329kg					
PACKING CRATE SIZE		183 x 92 x	x 140(cm)			183 x 92 x	140(cm)			
		50	Hz			60	Hz			
TELEPHONE INTERFERENCE		THF	<2%			TIF∙	<50			
COOLING AIR		1.614 m³/se	ec 3420 cfm			1.961 m ³ /se	c 4156 cfm			
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277		
VOLTAGE DELTA	220	230	240	254	240	254	266	277		
kVA BASE RATING FOR REACTANCE VALUES	1000	1000	1000	1000	1150	1200	1250	1300		
Xd DIR. AXIS SYNCHRONOUS	3.02	2.73	2.54	2.26	3.49	3.25	3.10	2.96		
X'd DIR. AXIS TRANSIENT	0.24	0.22	0.20	0.18	0.28	0.26	0.25	0.24		
X"d DIR. AXIS SUBTRANSIENT	0.17	0.15	0.14	0.12	0.19	0.18	0.17	0.16		
Xq QUAD. AXIS REACTANCE	1.78	1.61	1.50	1.33	2.05	1.91	1.82	1.74		
X"q QUAD. AXIS SUBTRANSIENT	0.21	0.19	0.18	0.16	0.25	0.23	0.22	0.21		
XL LEAKAGE REACTANCE X2 NEGATIVE SEQUENCE	0.09	0.08	0.08	0.07	0.10	0.10	0.09	0.09		
X0 ZERO SEQUENCE	0.21	0.19	0.18	0.10	0.23	0.23	0.22	0.21		
REACTANCES ARE SATURA					T RATING AN			1		
T'd TRANSIENT TIME CONST.				0.1						
T"d SUB-TRANSTIME CONST.				0.0	25					
T'do O.C. FIELD TIME CONST.		3.03								
Ta ARMATURE TIME CONST.				0.0						
SHORT CIRCUIT RATIO				1/)	٢d					

RN

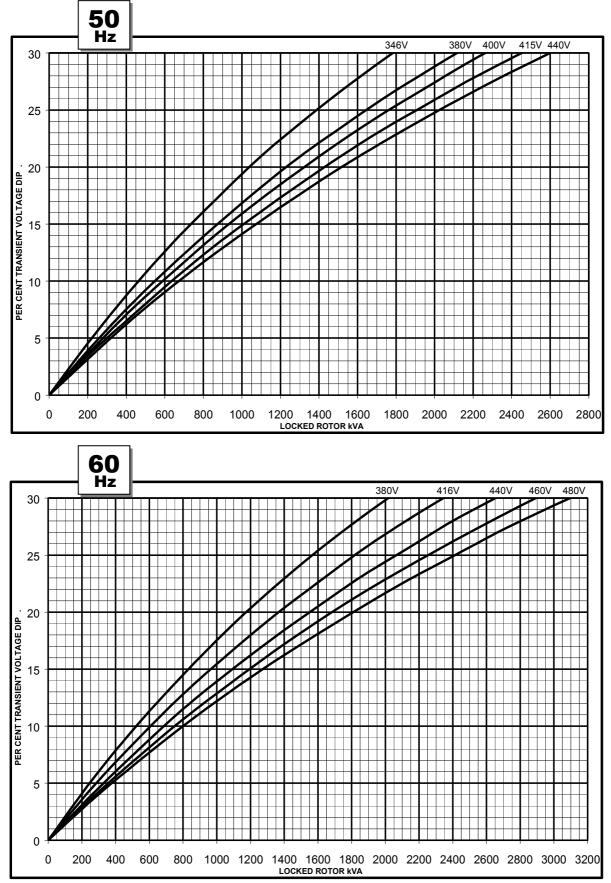


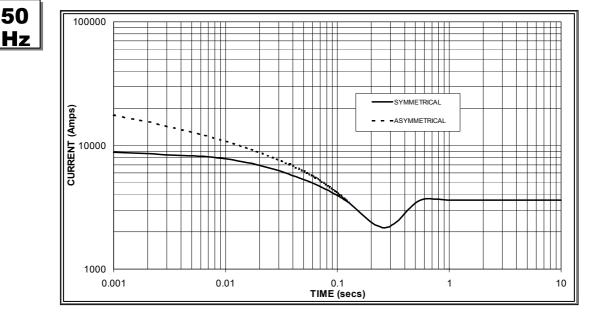



Winding 312

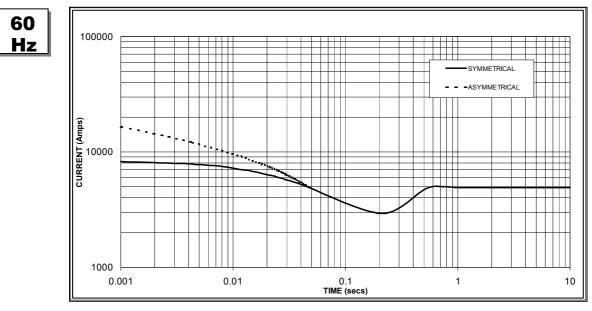


THREE PHASE EFFICIENCY CURVES





Winding 312


Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 3,600 Amps

Sustained Short Circuit = 4,900 Amps

Note 1

STAMFORD

power generation

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz					
Voltage	Factor	Voltage	Factor				
380v	X 1.00	416v	x 1.00				
400v	X 1.07	440v	x 1.06				
415v	X 1.12	460v	x 1.12				
440v	X 1.18	480v	x 1.17				

The sustained current value is constant irrespective of voltage level

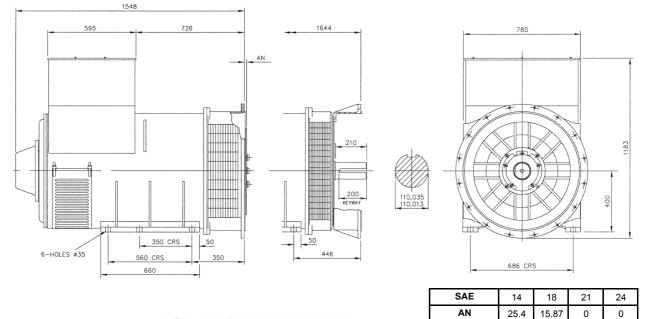
Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N						
Instantaneous	x 1.00	x 0.87	x 1.30						
Minimum	x 1.00	x 1.80	x 3.20						
Sustained	x 1.00	x 1.50	x 2.50						
Max. sustained duration	10 sec.	5 sec.	2 sec.						
All other times are unchanged									

Note 3

Curves are drawn for Star (Wye) connected machines. For Delta connection multiply the Curve current value by 1.732



Winding 312 0.8 Power Factor

RATINGS

Clas	s - Temp Rise	Co	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	Sta	andby -	150/40	°C	Sta	andby -	163/27	″°C
50 Hz	Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	900	927	900	900	1000	1030	1000	1000	1060	1070	1060	1060	1100	1110	1100	1100
	kW	720	742	720	720	800	824	800	800	848	856	848	848	880	888	880	880
	Efficiency (%)	95.3	95.4	95.5	95.6	95.0	95.1	95.3	95.4	94.7	94.9	95.1	95.3	94.6	94.8	95.0	95.2
	kW Input	756	777	754	753	842	866	839	839	895	902	892	890	930	937	926	924
60Hz	Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	1063	1100	1150	1188	1150	1200	1250	1300	1206	1250	1300	1350	1250	1300	1350	1400
	kW	850	880	920	950	920	960	1000	1040	965	1000	1040	1080	1000	1040	1080	1120
	Efficiency (%)	95.2	95.3	95.3	95.4	95.0	95.1	95.1	95.2	94.8	95.0	95.0	95.1	94.7	94.8	94.9	94.9
	kW Input	893	923	965	996	968	1009	1052	1092	1018	1053	1095	1136	1056	1097	1138	1180

DIMENSIONS

PO Box 17 • Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

© 2002 Newage International Limited. Reprinted with permission of N.I. only. Printed in England.

KTA38-G3

Typical picture

> Specification sheet

Our energy working for you.™

Description

The KTA38-Series benefits from years of technical development and improvement to bring customers an innovative and future proof diesel engine that keeps pace with ever changing generator set requirements.

Recognized globally for its performance under even the most severe climatic conditions, the KTA38-Series is widely acknowledged as the most robust and costeffective diesel engine in its power range for the generator set market.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

Aftercooler – Large capacity after cooler results in cooler, denser intake air for more efficient combustion and reduced internal stresses for longer life.

Fuel System - Cummins exclusive low pressure PT[™] system with wear compensating pump and integral dual flyweight governor. Camshaft actuated fuel injectors give accurate metering and timing. Fuel lines are internal drilled passages in cylinder heads. Spin-on fuel filter.

Cooling System – Gear driven centrifugal water pump. Large volume water passages provide even flow of coolant around cylinder liners, valves and injectors. Bypass thermostats regulate coolant temperature. Spin-on corrosion resistors check rust and corrosion, control acidity and remove Impurities.

Cylinder Block – Alloy cast iron with removable wet liners. Cross bolt support to main bearing cap provides extra strength and stability.

Turbocharger – Cummins Turbo Technologies (CTT) exhaust gas driven turbocharger mounted at top of engine provides more power, improved fuel economy, altitude compensation, and lower smoke and noise levels.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gros	s Engine Ou	tput	Net	Engine Out	e Output Typical Generator Set Output						
Standby	Prime	Base	Standby Prime Base			Standby	/ (ESP)	Prim	e (PRP)	Base (COP)	
	kWm/BHP			kWm/BHP		kWe	kVA	kWe	kVA	kWe kVA	
895/1200	806/1080	656/880	863/1157	783/1050	633/849	800	1000	728	910	600	750

1800 rpm (60 Hz Ratings)

Gros	s Engine Ou	tput	Net	Net Engine Output Typical Generator Set Output					utput			
Standby	Prime	Base	Standby Prime Base			Standby	/ (ESP)	Prim	e (PRP)	Base (COP)		
	kWm/BHP			kWm/BHP		kWe	kVA	kWe	kVA	kWe kV		
1000/1340	910/1220	776/1040	952/1276	872/1169	738/989	900	1125	820	1025	700	875	

General Engine Data

Туре	4 cycle, Turbocharged and After-cooled
Bore mm	159
Stroke mm	159
Displacement Liter	38
Cylinder Block	12-cylinder, direct injection, 4-cycle diesel engine
Battery Charging Alternator	35A
Starting Voltage	24V
Fuel System	Direct injection, EFC (Electric Fuel control) governor
Fuel Filter	Dual spin on paper element fuel filters
Lube Oil Filter Type(s)	Spin on full flow filter
Lube Oil Capacity (I)	140
Flywheel Dimensions	SAE 0

Coolpac Performance Data

Cooling System Design	JWAC	
Coolant Ratio	50% ethylene glycol; 50	% water
Total Coolant Capacity (I)	218.5	
Limiting Ambient Temp (°C)**	50 (50Hz)	56 (60Hz)
Fan Power (kWm)	20 (50Hz)	35 (60Hz)
Cooling System Air Flow (m ³ /s)**	18.7 (50Hz)	24.4 (60Hz)
Air Cleaner Type	Dry replaceable elemen	t with restriction indicator

** @ 13 mm H₂0

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
3172	1752	2004	4990

Note: Weights represent CoolPac with Light Duty Air Cleaner. See Outline drawings for weights and dimensions for Heavy Duty Air Cleaner configuration.

Fuel Consumption 1500 rpm (50 Hz)

%	kWm	BHP	L/ph	US gal/ph					
Standby Po	ower								
100	895	1200	221	58.3					
Prime Power									
100	806	1080	198	52.3					
75	604	810	151	39.9					
50	403	540	104	27.3					
25	201	270	54	14.3					
Continuous	Continuous Power								
100	656	880	164	43.3					

Cummins G-Drive Engines

Asia Pacific

10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Mexico Mexico

Cummins S. de R.L. de C.V.

Fuel Consumption 1800 rpm (60 Hz)

BHP

1340

1220

915

610

305

1040

kWm

1000

910

683

455

228

776

% Standby Power 100

Prime Power 100

75

50

25

100

Continuous Power

Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Phone 52 444 870 6700 Fax 52 444 870 6811

North America

L/ph

238

217

168

119

73

190

1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

US gal/ph

62.9

57.2

44.3

31.4

19.4

50.1

Ratings Definitions

Emergency Standby Power (ESP):

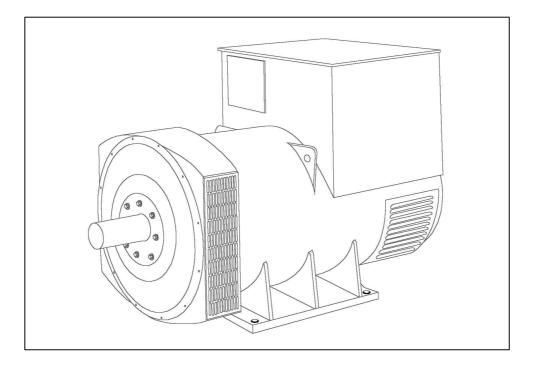
Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.


Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

HCI634H - Technical Data Sheet

HCI634H SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

MX321 AVR - STANDARD

This sophisticated Automatic Voltage Regulator (AVR) is incorporated into the Stamford Permanent Magnet Generator (PMG) system and is fitted as standard to generators of this type.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

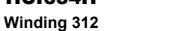
Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

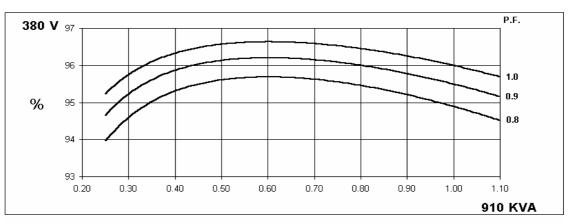
Front cover drawing typical of product range.

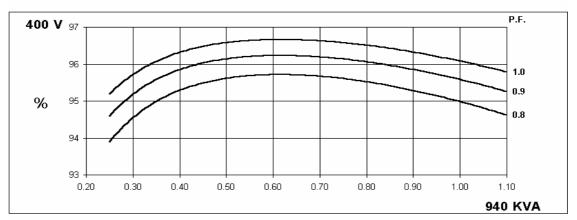
STAMFORD

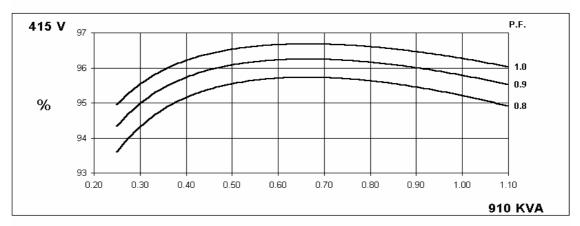

HCI634H

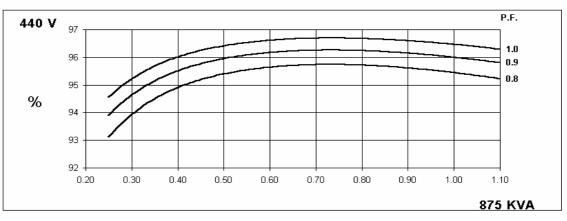
WINDING 312

CONTROL SYSTEM	SEPARATE	SEPARATELY EXCITED BY P.M.G.						
A.V.R.	MX321							
VOLTAGE REGULATION	± 0.5 %	With 4% EN	GINE GOVEF	RNING				
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIRC		IENT CURVE	ES (page 7)			
INSULATION SYSTEM				CLAS	SS H			
PROTECTION				IP2	23			
RATED POWER FACTOR				0.	8			
STATOR WINDING				DOUBLE L	AYER LAP			
WINDING PITCH				TWO T	HIRDS			
WINDING LEADS				6	1			
STATOR WDG. RESISTANCE		0.0	003 Ohms PE	R PHASE AT	22°C STAR	CONNECTE	D	
ROTOR WDG. RESISTANCE				1.88 Ohm				
				17 Ohms				
EXCITER STATOR RESISTANCE			0.07					
EXCITER ROTOR RESISTANCE		0.079 Ohms PER PHASE AT 22°C						
R.F.I. SUPPRESSION	BS E	BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE 0875N. refer to factory for others						
WAVEFORM DISTORTION	NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%							
MAXIMUM OVERSPEED	2250 Rev/Min							
BEARING DRIVE END	BALL. 6224 (ISO)							
BEARING NON-DRIVE END	BALL. 6317 (ISO)							
	1 BEARING 2 BEARING							
WEIGHT COMP. GENERATOR	2117 kg 2145 kg							
WEIGHT WOUND STATOR	1010 kg 1010 kg							
WEIGHT WOUND ROTOR		866	3 kg			821	ka	
WR ² INERTIA			8 kgm ²			19.496	-	
SHIPPING WEIGHTS in a crate			'3kg			218	-	
PACKING CRATE SIZE		183 x 92 :	•			183 x 92 x	•	
			Hz			60		
			<2%			TIF<		
			ec 3420 cfm			1.961 m ³ /se		
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277
	220	230	240	254	240	254	266	277
kVA BASE RATING FOR REACTANCE	910	910	910	875	1025	1063	1075	1125
Xd DIR. AXIS SYNCHRONOUS	2.99	2.70	2.51	2.15	3.37	3.13	2.89	2.78
X'd DIR. AXIS TRANSIENT	0.25	0.23	0.21	0.18	0.29	0.27	0.25	0.24
X"d DIR. AXIS SUBTRANSIENT	0.18	0.16	0.15	0.13	0.19	0.18	0.17	0.16
Xq QUAD. AXIS REACTANCE	1.77	1.60	1.49	1.27	2.00	1.86	1.72	1.65
X"q QUAD. AXIS SUBTRANSIENT	0.19 0.17 0.16 0.14				0.22	0.20	0.19	0.18
XL LEAKAGE REACTANCE X2 NEGATIVE SEQUENCE								0.08
X0 ZERO SEQUENCE	0.20 0.18 0.17 0.14 0.23 0.21 0.20 0.19 0.03 0.02 0.02 0.03 0.03 0.02 0.02							0.19
REACTANCES ARE SATURA								
T'd TRANSIENT TIME CONST.				0.1				
T"d SUB-TRANSTIME CONST.				0.0				
T'do O.C. FIELD TIME CONST.				2.4				
TA ARMATURE TIME CONST.				0.0 1/X				
SHORT CIRCUIT RATIO	l			1/2	NU			

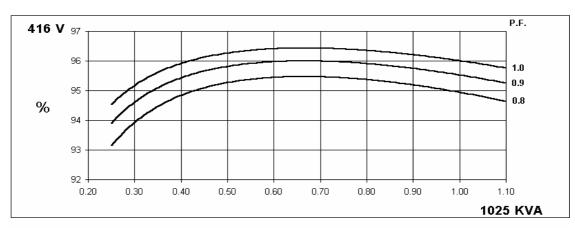


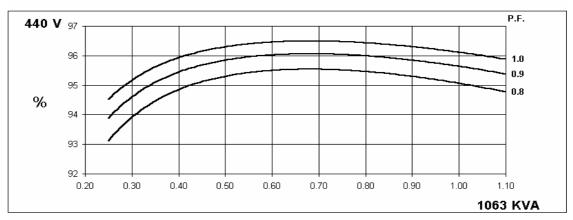

HCI634H

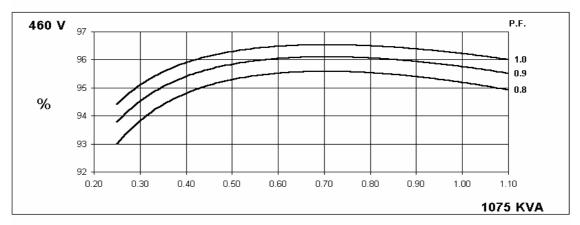


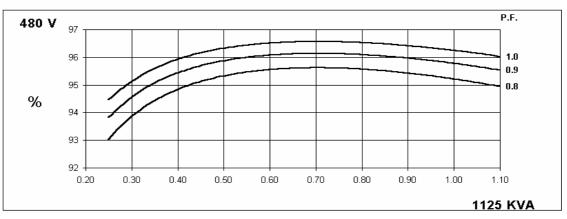


THREE PHASE EFFICIENCY CURVES

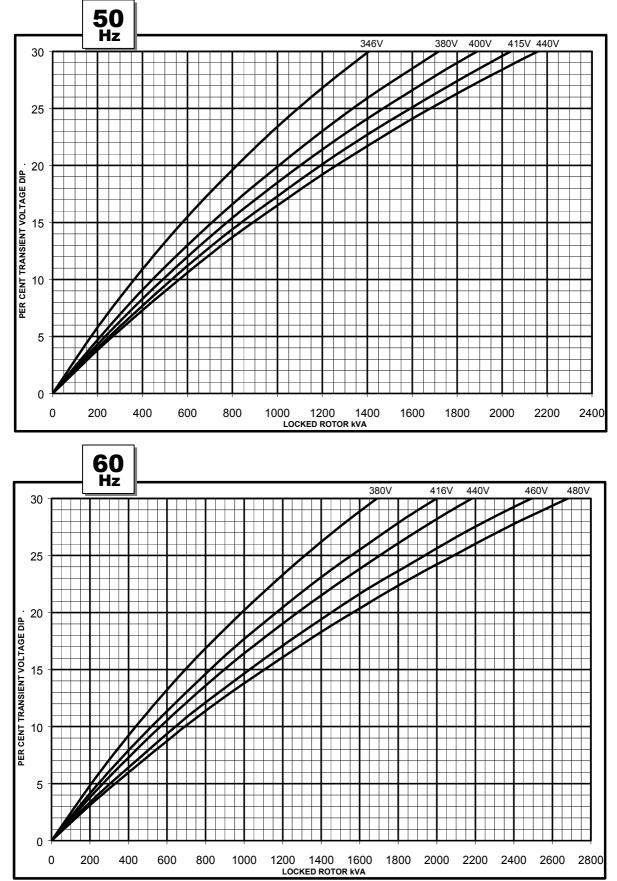


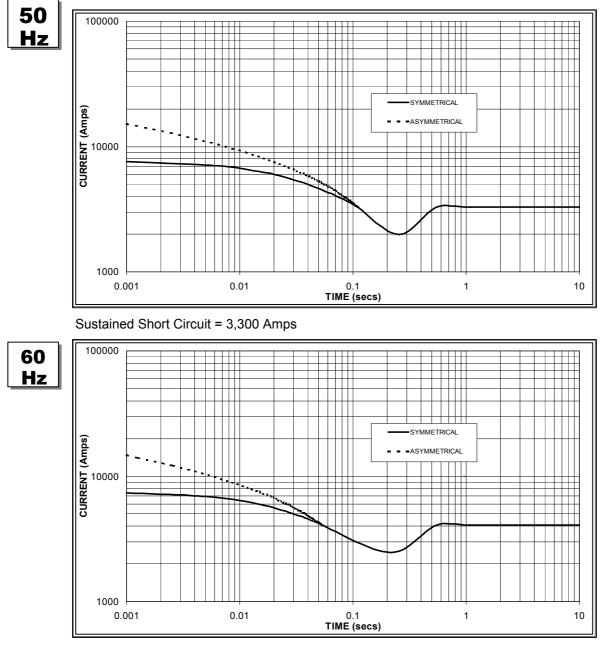



Winding 312



THREE PHASE EFFICIENCY CURVES





Winding 312

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 4,000 Amps

Note 1

STAMFORD

power generation

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	x 1.00
400v	X 1.07	440v	x 1.06
415v	X 1.12	460v	x 1.12
440v	X 1.18	480v	x 1.17

The sustained current value is constant irrespective of voltage level

Note 2

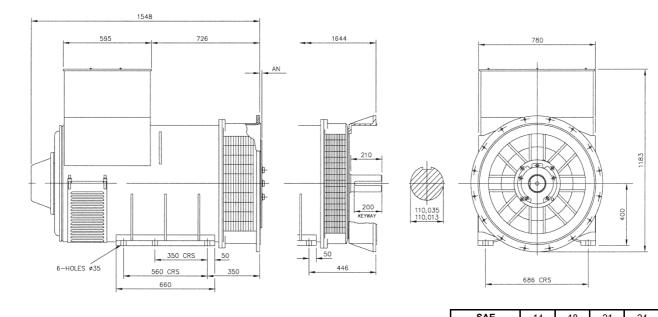
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines.



Winding 312 0.8 Power Factor

RATINGS

Class -	- Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	Sta	andby -	163/27	°°C
50 Hz	Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	830	860	830	800	910	940	910	875	960	980	960	920	1000	1010	1000	960
	kW	664	688	664	640	728	752	728	700	768	784	768	736	800	808	800	768
Ef	fficiency (%)	95.2	95.3	95.4	95.6	94.9	95.0	95.2	95.4	94.7	94.8	95.1	95.3	94.5	94.7	94.9	95.2
	kW Input	697	722	696	669	767	792	765	734	811	827	808	772	847	853	843	807
										I							
60 Hz	Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	913	963	1000	1025	1025	1063	1075	1125	1088	1125	1138	1188	1125	1163	1175	1219
	kW	730	770	800	820	820	850	860	900	870	900	910	950	900	930	940	975
Ef	fficiency (%)	95.2	95.3	95.3	95.4	94.9	95.1	95.2	95.2	94.8	94.9	95.0	95.1	94.6	94.8	94.9	95.0
	kW Input	767	808	839	860	864	894	903	945	918	948	958	999	951	981	991	1027

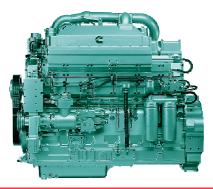
DIMENSIONS

AN 25.4 15.87
20.4 10.01

Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

© 2004 Newage International Limited. Reprinted with permission of N.I. only. Printed in England.

TD_HCI634H.GB_12.03_02_GB


21

0

24

0

KTA19-G4

> Specification sheet

Our energy working for you.™

Description

The KTA19-Series benefits from years of technical development and improvement to bring customers an innovative and future proof diesel engine that keeps pace with ever changing generator set requirements.

Recognised globally for its performance under even the most severe climatic conditions, the KTA19-Series is widely acknowledged as the most robust and costeffective diesel engine in its power range for the generator set market.

ISO 9001

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Turbocharger – Cummins Turbo technologies (CTT) exhaust gas driven turbocharger mounted at top of engine.

Fuel System – Cummins PT[™] self-adjusting system. Integral dual flyweight governor provides overspeed protection independent of main governor.

Aftercooler – Large capacity aftercooler results in cooler, denser intake air for more efficient combustion and reduced internal stresses for longer life.

Cylinder Block – Alloy cast iron with removable wet liners. Cross bolt support to main bearing cap provides extra strength and stability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gros	ss Engine O	utput	Net Engine Output				Typical Generator Set C				
Standby	Prime	Base	Standby	Standby Prime Base			Standby (ESP)		Prime (PRP)		(COP)
	kWm/BHP			kWm/BHP			kVA	kWe	kVA	kWe	kVA
504/675	488/600	355/475	479/642	428/573	335/449	440	550	400	500	315	393

1800 rpm (60 Hz Ratings)

Gros	ss Engine O	utput	Net Engine Output				Typical Generator Set (
Standby	Prime	Base	Standby	Prime	Base	Standby	(ESP)	Prime	e (PRP)	Base	(COP)
	kWm/BHP			kWm/BHP			kVA	kWe	kVA	kWe	kVA
563/755	507/680	429/575	520/697	470/630	392/525	500	625	455	569	368	460

General Engine Data

Туре	4 cycle, in-line, Turbo Charged
Bore mm	159
Stroke mm	159
Displacement Litre	18.9 litre
Cylinder Block	Cast iron, 6 cylinder
Battery Charging Alternator	35A
Starting Voltage	24V
Fuel System	Direct injection
Fuel Filter	Spin-on fuel filters with water separator
Lube Oil Filter Type(s)	Spin-on full flow filter
Lube Oil Capacity (I)	50
Flywheel Dimensions	SAE 0

Coolpac Performance Data

Cooling System Design	Jacket Water After Cooled				
Coolant Ratio	50% ethylene glycol; 50% water				
Coolant Capacity (I)					
Limiting Ambient Temp (℃)**	Engine only – not applicable				
Fan Power (kWm)	Engine only – not applicable				
Cooling System Air Flow (m ³ /s)**					
Air Cleaner Type	Dry replaceable element with restriction indicator				
** @ 13 mm H ² 0					

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Fuel Consumption 1800 rpm (60 Hz)

BHP

755

680

510

340

170

575

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
1859	868	1728	1855

Fuel Consumption 1500 rpm (50 Hz)

%	kWm	BHP	L/ph	US gal/ph							
Standby Power											
100	504	675	121	31.9							
Prime Power											
100	448	600	107	28.4							
75	336	450	82	21.6							
50	224	300	57	14.9							
25	112	150	30	8.1							
Continuous Power											
100	355	475	86	22.8							

Cummins G-Drive Engines

Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729

Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811

kWm

563

507

380

254

127

429

% Standby Power 100

Prime Power 100

75

50

25

Continuous Power 100

North America

L/ph

136

122

94

65

36

104

US gal/ph

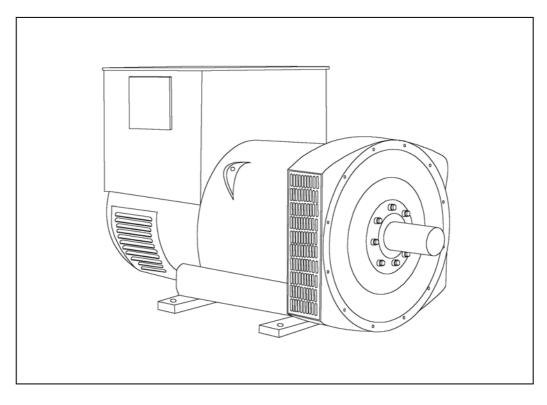
35.9

32.3

24.8

17

9.6


27.3

1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

HCI 534D/544D - Technical Data Sheet

SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The SX440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

If 3-phase sensing is required with the self-excited system, the SX421 AVR must be used.

SX421 AVR

This AVR also operates in a self-excited system. It combines all the features of the SX440 with, additionally, three-phase rms sensing for improved regulation and performance. Over voltage protection is provided via a separate circuit breaker. An engine relief load acceptance feature is built in as standard.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

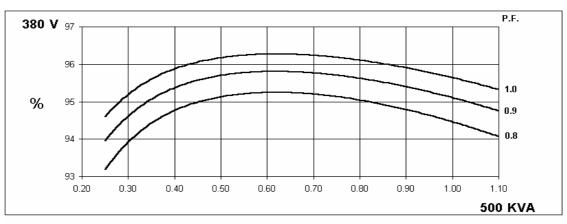
Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

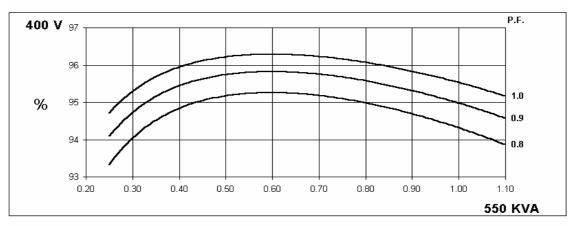
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

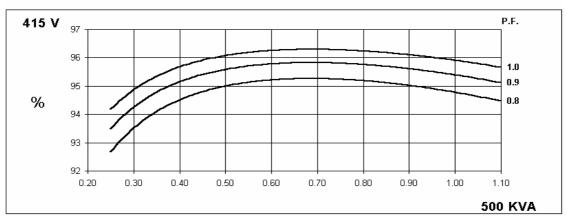
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

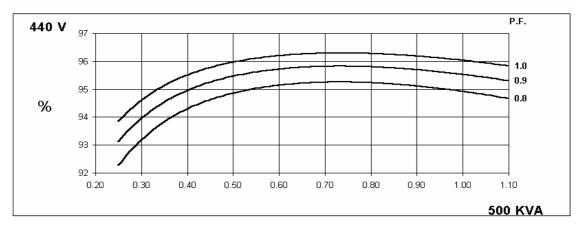
Front cover drawing typical of product range.

WINDING 311

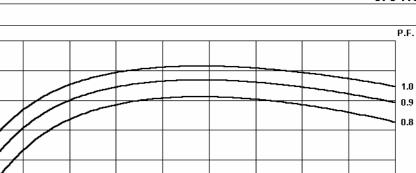

CONTROL SYSTEM	SEPARATEI	Y EXCITED	BYPMG									
A.V.R.	MX321 MX341											
VOLTAGE REGULATION	$\pm 0.5\%$ $\pm 1.0\%$ With 4% ENGINE GOVERNING											
	REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)											
SUSTAINED SHORT CIRCUIT	REFER TO S	SHURT CIRC			ES (page 7)							
CONTROL SYSTEM	SELF EXCIT	ED	T.									
A.V.R.	SX440	SX440 SX421										
VOLTAGE REGULATION	± 1.0 %	± 1.0 % ± 0.5 % With 4% ENGINE GOVERNING										
SUSTAINED SHORT CIRCUIT	SERIES 4 C	SERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT										
INSULATION SYSTEM		CLASS H										
PROTECTION				IP2	23							
RATED POWER FACTOR				0.	8							
STATOR WINDING				DOUBLE L	AYER LAP							
WINDING PITCH				TWO T	HIRDS							
WINDING LEADS				1:	2							
STATOR WDG. RESISTANCE		0.005	Ohms PER PI			TAR CONNE	CTED					
ROTOR WDG. RESISTANCE				1.77 Ohm	s at 22°C		-					
R.F.I. SUPPRESSION	BS FI	N 61000-6-2	& BS EN 6100	0.6-4 VDF 0	875G VDF 0	875N refer to	o factory for o	thers				
WAVEFORM DISTORTION			< 1.5% NON-									
MAXIMUM OVERSPEED		110 20/18	1.070 11011	2250 R			1.D 0.070					
BEARING DRIVE END				BALL. 62	-							
BEARING NON-DRIVE END				BALL. 63	· · /							
BEARING NON-DRIVE END		1 BE/	ARING	DALL. 03	14 (130)	2 BEA	RING					
WEIGHT COMP. GENERATOR		139		95 kg								
WEIGHT WOUND STATOR			7 kg		657 kg							
WEIGHT WOUND ROTOR			3 kg			535	kg					
WR ² INERTIA		8.006	8 kgm ²			7.7289	kgm ²					
SHIPPING WEIGHTS in a crate		148	35 kg			148	5 kg					
PACKING CRATE SIZE			x 124(cm)			166 x 87 >						
			Hz			60						
			-<2% ec 2202 cfm		TIF<50 1.312 m³/sec 2780 cfm							
COOLING AIR VOLTAGE SERIES STAR	380/220		415/240	440/254	416/240		460/266	480/277				
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138				
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138				
KVA BASE RATING FOR REACTANCE	500	500	500	500	575	594	625	644				
VALUES Xd DIR. AXIS SYNCHRONOUS	3.02	2.72	2.53	2.25	3.52	3.25	3.13	2.96				
X'd DIR. AXIS TRANSIENT	0.16	0.14	0.13	0.12	0.17	0.16	0.15	0.14				
X"d DIR. AXIS SUBTRANSIENT	0.11	0.10	0.09	0.08	0.12	0.11	0.11	0.10				
Xq QUAD. AXIS REACTANCE	2.48	2.24	2.08	1.85	2.87	2.65	2.55	2.41				
X"q QUAD. AXIS SUBTRANSIENT	0.27	0.25	0.23	0.20	0.31	0.29	0.28	0.26				
XL LEAKAGE REACTANCE	0.05	0.04	0.04	0.04	0.06	0.06	0.05	0.05				
X2 NEGATIVE SEQUENCE	0.19	0.17	0.16	0.14	0.22	0.20	0.20	0.19				
X ₀ ZERO SEQUENCE	0.10	0.09	0.08	0.07	0.10	0.09	0.09	0.08				
REACTANCES ARE SATURAT	ED	١	ALUES ARE			ND VOLTAGE)				
				0.0								
T"d SUB-TRANSTIME CONST. T'do O.C. FIELD TIME CONST.				0.0								
	0.018s											
Ta ARMATURE TIME CONST.				0.01	18s							


HCI534D/544D Winding 311



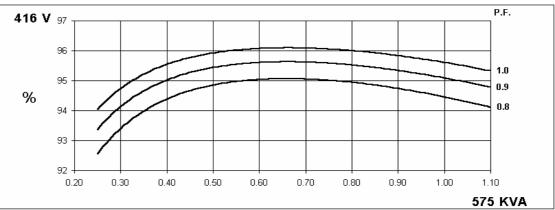


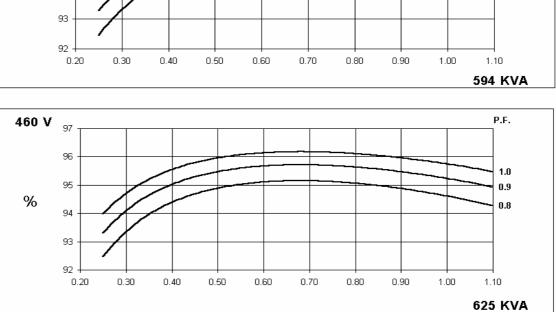
THREE PHASE EFFICIENCY CURVES

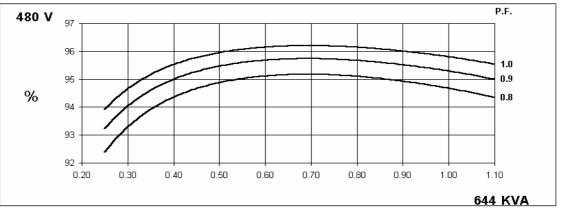


5

60


Hz



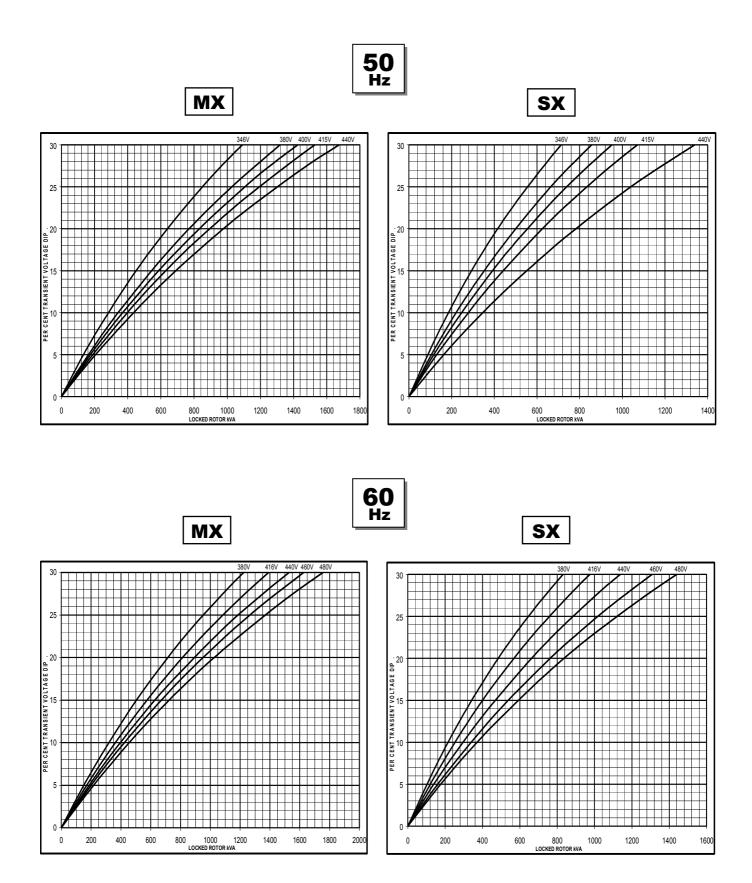

THREE PHASE EFFICIENCY CURVES

HCI534D/544D

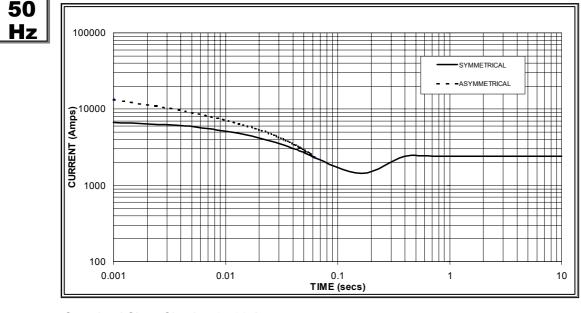
440 V 97

%

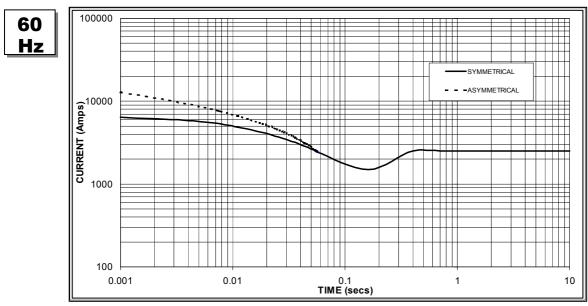
96


95

94


Winding 311

Locked Rotor Motor Starting Curve



Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 2,400 Amps

Sustained Short Circuit = 2,500 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	X 1.00
400v	X 1.06	440v	X 1.06
415v	X 1.09	460v	X 1.12
440v	X 1.12	480v	X 1.20

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

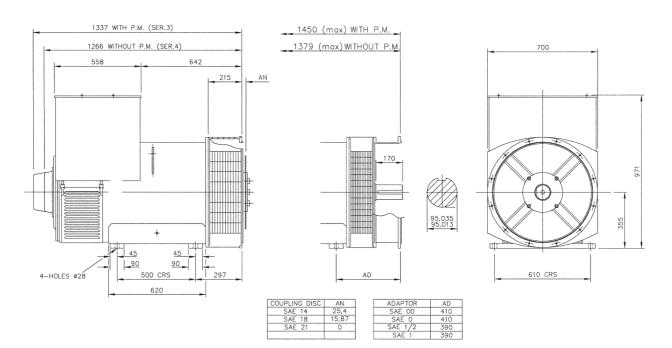
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3 Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732


Winding 311 0.8 Power Factor

STAMFORD

RATINGS

	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40)°C	St	andby -	163/27	″°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	450	495	450	450	500	550	500	500	515	575	515	515	530	590	530	530
	kW	360	396	360	360	400	440	400	400	412	460	412	412	424	472	424	424
	Efficiency (%)	94.8	94.7	95.0	95.1	94.5	94.3	94.8	94.9	94.4	94.1	94.7	94.9	94.2	94.0	94.6	94.8
	kW Input	380	418	379	379	423	467	422	421	436	489	435	434	450	502	448	447
										1				1			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	519	538	563	588	575	594	625	644	588	625	655	675	606	644	673	694
	kW	415	430	450	470	460	475	500	515	470	500	524	540	485	515	538	555
	Efficiency (%)	94.7	94.8	94.9	94.9	94.5	94.6	94.6	94.7	94.4	94.4	94.5	94.5	94.3	94.3	94.4	94.4
	kW Input	438	454	475	496	487	502	529	544	498	530	554	571	514	546	570	588

DIMENSIONS

w w w . f a m c o c o r p . c o m
E-mail: info@famcocorp.com
@famco_group

🕕 Tel:0४1– ۴ Л о о о о ۴ ۹

C Fax:01 - ۴۴۹۹۴۶۴۲

تهران، کیلومتر ۲۱ بزرگراه لشگری (جاده مخصوص کرج)

روبـروی پالایشگاه نفت پارس، پلاک ۱۲