
STAMFORD

HCI 534C/544C - Winding 311

Technical Data Sheet

STAMFORD

HCI534C/544C SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2 100. AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

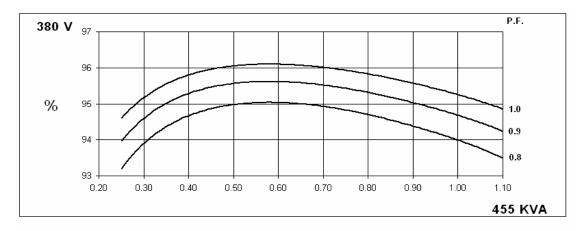
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

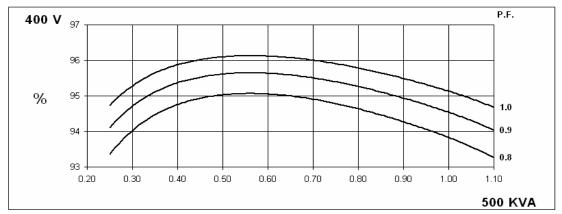
Front cover drawing typical of product range.

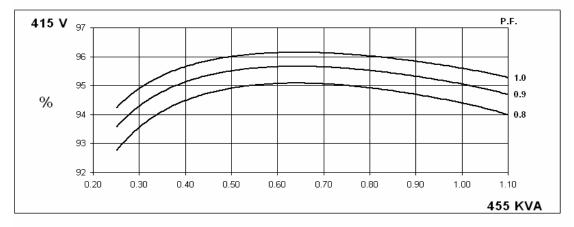
HCI534C/544C

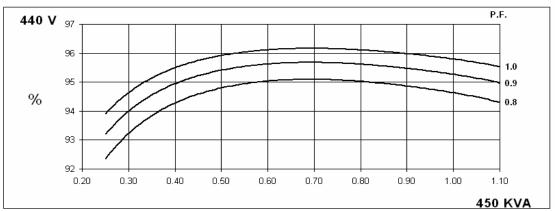
WINDING 311

WAVEFORM DISTORTION NO LOAD < 1.8% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%	CONTROL SYSTEM SEDADATELY SYCITED BY D.M.C.													
VOLTAGE REGULATION	CONTROL SYSTEM	SEPARATELY EXCITED BY P.M.G.												
SUSTAINED SHORT CIRCUIT REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)	A.V.R.	MX321 MX341												
SUSTAINED SHORT CIRCUIT REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)	VOLTAGE REGULATION	± 0.5 % ± 1.0 % With 4% ENGINE GOVERNING												
A.V.R.	SUSTAINED SHORT CIRCUIT	REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)												
VOLTAGE REGULATION	CONTROL SYSTEM	SELF EXCITED												
SUSTAINED SHORT CIRCUIT SERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT	A.V.R.	AS440												
SUSTAINED SHORT CIRCUIT SERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT	VOLTAGE REGULATION	+ 1.0 %	With 4% FN	GINE GOVE	RNING									
PROTECTION	SUSTAINED SHORT CIRCUIT					ORT CIRCUI	T CURRENT	-						
PROTECTION	INCLILATION SYSTEM				CLAS	ее u								
RATED POWER FACTOR STATOR WINDING DOUBLE LAYER LAP WINDING PITCH TWO THIRDS WINDING EARDS STATOR WORD, RESISTANCE ROTOR WDG, RESISTANCE EXCITER STATOR RESISTANCE EXCITER STATOR RESISTANCE EXCITER STATOR RESISTANCE EXCITER STATOR RESISTANCE SERIES STATOR BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE 0875N. refer to factory for others WAVEFORM DISTORTION MAXIMUM OVERSPEED BEARING DRIVE END BEARING DRIVE END BEARING ON-DRIVE END BEARING BEARING ON-DRIVE END BEARING ON-DRIVE ENDR														
STATOR WINDING														
WINDING PITCH	RATED POWER FACTOR													
WINDING LEADS 12	STATOR WINDING													
STATOR WDG. RESISTANCE ROTOR WDG. RESISTANCE EXCITER STATOR RESISTANCE EXCITER STATOR RESISTANCE EXCITER ROTOR RESISTANCE IT 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE EXCITER ROTOR RESISTANCE IT 0.092 Ohms PER PHASE AT 22°C IT 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE IT 0.092 Ohms PER PHASE AT 22°C IN 0.092 Ohms PER PHASE AT 22°C IT 0.092 Ohms PER PHASE AT 22°C I	WINDING PITCH	TWO THIRDS												
1.55 Ohms at 22°C	WINDING LEADS													
EXCITER STATOR RESISTANCE EXCITER ROTOR RESISTANCE EXCITER ROTOR RESISTANCE I 0.092 Ohms PER PHASE AT 22°C R.F.I. SUPPRESSION BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE 0875N. refer to factory for others WAVEFORM DISTORTION NO LOAD < 1.5%, NON-DISTORTING BALANCED LINEAR LOAD < 5.0% MAXIMUM OVERSPEED BEARING DRIVE END BEARING NON-DRIVE END BEARING NON-DRIVE END BEARING OND-DRIVE OND-D	STATOR WDG. RESISTANCE		· ·											
EXCITER ROTOR RESISTANCE R.F.I. SUPPRESSION BS EN 61000-6-2 & B EN 61000-6-4, VDE 0875G, VDE 0875N. refer to factory for others WAVEFORM DISTORTION NO LOAD < 1.5%, NON-DISTORTING BALANCED LINEAR LOAD < 5.0% MAXIMUM OVERSPEED 2250 Rev/Min BEARING DRIVE END BALL. 6220 (ISO) BEARING NON-DRIVE END BALL. 6314 (ISO) 1 BEARING VEIGHT COMP. GENERATOR WEIGHT WOUND STATOR 584 kg WEIGHT WOUND ROTOR WEIGHT WOUND ROTOR WEIGHT WOUND ROTOR 502 kg 473 kg WR2 INERTIA 6.8928 kgm² 6.6149 kgm² SHIPPING WEIGHTS in a crate 1355 kg PACKING CRATE SIZE 166 x 87 x 124(cm) 100 Hz TELEPHONE INTERFERENCE THF-{2*} TIF-50 COOLING AIR VOLTAGE SERIES STAR 380/220 400/231 415/240 440/254 416/240 440/254 460/266 480 VOLTAGE SERIES DELTA 200/110 230/115 240/120 220/127 208/120 220/127 230/133 240 VOLTAGE SERIES DELTA 220/110 230/115 240/120 254/127 240/120 254/127 266/133 277 KVA BASE RATING FOR REACTANCE 455 500 455 450 525 550 581 55 Xd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.49 3.02 2.92 2.82 2.2 2.2 2.82 2.2 2.2 2.82 2.2 2.2	ROTOR WDG. RESISTANCE				1.55 Ohm:	s at 22°C								
R.F.I. SUPPRESSION BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE 0875N. refer to factory for others WAVEFORM DISTORTION NO LOAD < 1.5%, NON-DISTORTING BALANCED LINEAR LOAD < 5.0% MAXIMUM OVERSPEED BEARING DRIVE END BALL. 6220 (ISO) BEARING NON-DRIVE END BALL. 6314 (ISO) 1 BEARING WEIGHT COMP. GENERATOR 1263 kg WEIGHT WOUND STATOR WEIGHT WOUND ROTOR 502 kg WR2 INERTIA 6.8928 kgm² 6.6149 kgm² 8HIPPING WEIGHTS in a crate 1355 kg PACKING CRATE SIZE 166 x 87 x 124(cm) 108 HF-2% COOLING AIR 1.035 m³/sec 2202 cfm 1.312 m³/sec 2780 cfm VOLTAGE SERIES STAR 190/110 200/115 208/120 225/127 240/120 254/127 240/120 254/127 266/133 277 X/A DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.12 2.92 2.82 2.87 2.74 2.90 A.33 3.12 2.92 2.82 2.77 2.44 3.94 3.10 3.11 3.11 3.11 3.12 3.12 3.12 3.12 3.12 3.13 3.13 3.14 3.15	EXCITER STATOR RESISTANCE			70	17 Ohms	at 22°C								
WAVEFORM DISTORTION NO LOAD < 1.59%, NON-DISTORTING BALANCED LINEAR LOAD < 5.0%	EXCITER ROTOR RESISTANCE													
MAXIMUM OVERSPEED 2250 Rev/Min BEARING DRIVE END BALL. 6220 (ISO) BEARING NON-DRIVE END BALL. 6314 (ISO) BEARING WEIGHT COMP. GENERATOR 1263 kg 1275 kg WEIGHT WOUND STATOR 584 kg 584 kg WEIGHT WOUND ROTOR 502 kg 473 kg WR2 INERTIA 6.8928 kgm² 6.6149 kgm² SHIPPING WEIGHTS in a crate 1355 kg 1395 kg PACKING CRATE SIZE 166 x 87 x 124(cm) 166 x 87 x 124(cm) FIF-<50	R.F.I. SUPPRESSION	BS EN 61000-6-2 & BS EN 61000-6-4,VDE 0875G, VDE 0875N. refer to factory for others												
BEARING DRIVE END BEARING NON-DRIVE END 1 BEARING WEIGHT COMP, GENERATOR WEIGHT WOUND STATOR WEIGHT WOUND ROTOR SO2 8	WAVEFORM DISTORTION	(<u>(</u>))												
BALL. 6314 (ISO) 1 BEARING WEIGHT COMP. GENERATOR WEIGHT WOUND STATOR WEIGHT WOUND ROTOR S02 kg WEIGHT WOUND ROTOR WEIGHT WOUND ROTOR S02 kg WR2 INERTIA 6.8928 kgm² 6.6149 kgm² SHIPPING WEIGHTS in a crate 13355 kg 166 x 87 x 124(cm) FOLTAGE SERIES STAR 380/220 400/231 415/240 440/254 416/240 440/254 460/266 480 VOLTAGE SERIES DELTA VOLTAGE	MAXIMUM OVERSPEED													
BALL. 6314 (ISO) 1 BEARING WEIGHT COMP. GENERATOR WEIGHT WOUND STATOR WEIGHT WOUND ROTOR S02 kg WEIGHT WOUND ROTOR WEIGHT WOUND ROTOR S02 kg WR2 INERTIA 6.8928 kgm² 6.6149 kgm² SHIPPING WEIGHTS in a crate 13355 kg 166 x 87 x 124(cm) FOLTAGE SERIES STAR 380/220 400/231 415/240 440/254 416/240 440/254 460/266 480 VOLTAGE SERIES DELTA VOLTAGE	BEARING DRIVE END	BALL. 6220 (ISO)												
The property of the property														
WEIGHT COMP. GENERATOR 1263 kg 1275 kg														
WEIGHT WOUND ROTOR 502 kg 473 kg	WEIGHT COMP. GENERATOR	1263 kg 1275 kg												
WR² INERTIA 6.8928 kgm² 6.6149 kgm² SHIPPING WEIGHTS in a crate 1395 kg 1395 kg PACKING CRATE SIZE 166 x 87 x 124(cm) 166 x 87 x 124(cm) FOR INTERFERENCE THF<2% TELEPHONE INTERFERENCE		584 kg 584 kg												
SHIPPING WEIGHTS in a crate 1355 kg 1395 kg PACKING CRATE SIZE 166 x 87 x 124(cm) 166 x 87 x 124(cm) 50 HZ 60 Hz TELEPHONE INTERFERENCE THF<2%	<td>WEIGHT WOUND ROTOR</td> <td colspan="11"></td>	WEIGHT WOUND ROTOR												
PACKING CRATE SIZE 166 x 87 x 124(cm) 50 H₂ TELEPHONE INTERFERENCE THF<2% COOLING AIR 1.035 m³/sec 2202 cfm VOLTAGE SERIES STAR 380/220 400/231 415/240 440/254 416/240 440/254 460/266 480 VOLTAGE PARALLEL STAR 190/110 200/115 208/120 220/127 208/120 220/127 230/133 240 VOLTAGE SERIES DELTA 220/110 230/115 240/120 254/127 240/120 254/127 266/133 277 kVA BASE RATING FOR REACTANCE VALUES Xd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS TRANSIENT 0.18 0.18 0.15 0.13 0.18 0.17 0.16 0. X"d DIR. AXIS SUBTRANSIENT 0.13 0.13 0.11 0.10 0.13 0.12 0.12 0. Xq QUAD. AXIS REACTANCE 2.69 2.67 2.25 1.98 3.12 2.92 2.82 2. X"q QUAD. AXIS SUBTRANSIENT 0.27 0.26 0.22 0.20 0.34 0.32 0.31 0. XL LEAKAGE REACTANCE 0.07 0.07 0.07 0.06 0.05 0.08 0.07 0.07	WR² INERTIA													
TELEPHONE INTERFERENCE	SHIPPING WEIGHTS in a crate	Ţ												
TELEPHONE INTERFERENCE COOLING AIR 1.035 m³/sec 2202 cfm 1.312 m³/sec 2780 cfm VOLTAGE SERIES STAR 380/220 400/231 415/240 440/254 416/240 440/254 460/266 480 VOLTAGE PARALLEL STAR 190/110 200/115 208/120 220/127 208/120 220/127 230/133 240 VOLTAGE SERIES DELTA 220/110 230/115 240/120 254/127 240/120 254/127 266/133 277 kVA BASE RATING FOR REACTANCE 455 500 455 450 525 550 581 59 Xd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS TRANSIENT 0.18 0.18 0.15 0.13 0.18 0.17 0.16 0. X"d DIR. AXIS SUBTRANSIENT 0.13 0.13 0.11 0.10 0.13 0.12 0.12 0. Xq QUAD. AXIS REACTANCE 2.69 2.67 2.25 1.98 3.12 2.92 2.82 2. X"q QUAD. AXIS SUBTRANSIENT 0.27 0.26 0.22 0.20 0.34 0.32 0.31 0. XL LEAKAGE REACTANCE 0.07 0.07 0.06 0.05 0.08 0.07 0.07 0.07	PACKING CRATE SIZE													
COOLING AIR 1.035 m³/sec 2202 cfm 1.312 m³/sec 2780 cfm VOLTAGE SERIES STAR 380/220 400/231 415/240 440/254 416/240 440/254 460/266 480 VOLTAGE PARALLEL STAR 190/110 200/115 208/120 220/127 208/120 220/127 230/133 240 VOLTAGE SERIES DELTA 220/110 230/115 240/120 254/127 240/120 254/127 266/133 277 RVA BASE RATING FOR REACTANCE VALUES 455 500 455 450 525 550 581 55 Xd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS TRANSIENT 0.18 0.18 0.15 0.13 0.18 0.17 0.16 0. X''d DIR. AXIS SUBTRANSIENT 0.13 0.11 0.10 0.13 0.12 0.12 0. Xq QUAD. AXIS REACTANCE 2.69 2.67 2.25 1.98 3.12 2.92 2.82 2. X''q QUAD. AXIS SUBTRANSIENT 0.27 0.26 0.22 0.20 0.34 0.32 0.31 0. XL LEAKAGE REACTANCE 0.07 0.07 0.06 0.05 0.08 0.07 0.07 0.07														
VOLTAGE SERIES STAR 380/220 400/231 415/240 440/254 416/240 440/254 460/266 480 VOLTAGE PARALLEL STAR 190/110 200/115 208/120 220/127 208/120 220/127 230/133 240 VOLTAGE SERIES DELTA 220/110 230/115 240/120 254/127 240/120 254/127 266/133 277 kVA BASE RATING FOR REACTANCE VALUES 455 500 455 450 525 550 581 55 Xd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS TRANSIENT 0.18 0.18 0.15 0.13 0.18 0.17 0.16 0. X"d DIR. AXIS SUBTRANSIENT 0.13 0.11 0.10 0.13 0.12 0.12 0. Xq QUAD. AXIS REACTANCE 2.69 2.67 2.25 1.98 3.12 2.92 2.82 2. X''q QUAD. AXIS SUBTRANSIENT 0.07 0.06 0.05		U U U												
VOLTAGE PARALLEL STAR 190/110 200/115 208/120 220/127 208/120 220/127 230/133 240 VOLTAGE SERIES DELTA 220/110 230/115 240/120 254/127 240/120 254/127 266/133 277 kVA BASE RATING FOR REACTANCE VALUES 455 500 455 450 525 550 581 50 Xd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS TRANSIENT 0.18 0.18 0.15 0.13 0.18 0.17 0.16 0. X"d DIR. AXIS SUBTRANSIENT 0.13 0.11 0.10 0.13 0.12 0.12 0. Xq QUAD. AXIS REACTANCE 2.69 2.67 2.25 1.98 3.12 2.92 2.82 2. X"q QUAD. AXIS SUBTRANSIENT 0.27 0.26 0.22 0.20 0.34 0.32 0.31 0. XL LEAKAGE REACTANCE 0.07 0.07 0.06 0.05														
VOLTAGE SERIES DELTA 220/110 230/115 240/120 254/127 240/120 254/127 266/133 277 kVA BASE RATING FOR REACTANCE VALUES 455 500 455 450 525 550 581 50 Xd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS TRANSIENT 0.18 0.18 0.15 0.13 0.18 0.17 0.16 0. X''d DIR. AXIS SUBTRANSIENT 0.13 0.11 0.10 0.13 0.12 0.12 0. Xq QUAD. AXIS REACTANCE 2.69 2.67 2.25 1.98 3.12 2.92 2.82 2. X"q QUAD. AXIS SUBTRANSIENT 0.27 0.26 0.22 0.20 0.34 0.32 0.31 0. XL LEAKAGE REACTANCE 0.07 0.07 0.06 0.05 0.08 0.07 0.07 0.									480/277					
kVA BASE RATING FOR REACTANCE VALUES 455 500 455 450 525 550 581 56 Xd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS TRANSIENT 0.18 0.18 0.15 0.13 0.18 0.17 0.16 0. X"d DIR. AXIS SUBTRANSIENT 0.13 0.11 0.10 0.13 0.12 0.12 0. Xq QUAD. AXIS REACTANCE 2.69 2.67 2.25 1.98 3.12 2.92 2.82 2. X"q QUAD. AXIS SUBTRANSIENT 0.27 0.26 0.22 0.20 0.34 0.32 0.31 0. XL LEAKAGE REACTANCE 0.07 0.07 0.06 0.05 0.08 0.07 0.07 0.0									240/138 277/138					
VALUES Xd DIR. AXIS SYNCHRONOUS 3.30 3.28 2.77 2.44 3.94 3.69 3.57 3. X'd DIR. AXIS TRANSIENT 0.18 0.18 0.15 0.13 0.18 0.17 0.16 0. X''d DIR. AXIS SUBTRANSIENT 0.13 0.11 0.10 0.13 0.12 0.12 0. Xq QUAD. AXIS REACTANCE 2.69 2.67 2.25 1.98 3.12 2.92 2.82 2. X"q QUAD. AXIS SUBTRANSIENT 0.27 0.26 0.22 0.20 0.34 0.32 0.31 0. XL LEAKAGE REACTANCE 0.07 0.07 0.06 0.05 0.08 0.07 0.07 0.07														
X'd DIR. AXIS TRANSIENT 0.18 0.18 0.15 0.13 0.18 0.17 0.16 0. X"d DIR. AXIS SUBTRANSIENT 0.13 0.13 0.11 0.10 0.13 0.12 0.12 0. Xq QUAD. AXIS REACTANCE 2.69 2.67 2.25 1.98 3.12 2.92 2.82 2. X"q QUAD. AXIS SUBTRANSIENT 0.27 0.26 0.22 0.20 0.34 0.32 0.31 0. XL LEAKAGE REACTANCE 0.07 0.07 0.06 0.05 0.08 0.07 0.07 0.			500	455	450	525	550	581	594					
X"d DIR. AXIS SUBTRANSIENT 0.13 0.13 0.11 0.10 0.13 0.12 0.12 0. Xq QUAD. AXIS REACTANCE 2.69 2.67 2.25 1.98 3.12 2.92 2.82 2. X"q QUAD. AXIS SUBTRANSIENT 0.27 0.26 0.22 0.20 0.34 0.32 0.31 0. XL LEAKAGE REACTANCE 0.07 0.07 0.06 0.05 0.08 0.07 0.07 0.	Xd DIR. AXIS SYNCHRONOUS	3.30	3.28	2.77	2.44	3.94	3.69	3.57	3.35					
Xq QUAD. AXIS REACTANCE 2.69 2.67 2.25 1.98 3.12 2.92 2.82 2. X"q QUAD. AXIS SUBTRANSIENT 0.27 0.26 0.22 0.20 0.34 0.32 0.31 0. XL LEAKAGE REACTANCE 0.07 0.07 0.06 0.05 0.08 0.07 0.07 0.	X'd DIR. AXIS TRANSIENT		0.18	0.15	0.13	0.18	0.17	0.16	0.15					
X"q QUAD. AXIS SUBTRANSIENT 0.27 0.26 0.22 0.20 0.34 0.32 0.31 0. XL LEAKAGE REACTANCE 0.07 0.07 0.06 0.05 0.08 0.07 0.07 0.			0.13	0.11		0.13			0.11					
XLLEAKAGE REACTANCE 0.07 0.07 0.06 0.05 0.08 0.07 0.07 0.	'								2.65					
	•								0.29					
IVONECATIVE SECULENCE 0.40 0.40 0.44 0.00 0.04 0.									0.07					
	X2 NEGATIVE SEQUENCE	0.19	0.19	0.16	0.14	0.23	0.22	0.21	0.20					
T'd TRANSIENT TIME CONST. 0.08s T"d SUB-TRANSTIME CONST. 0.012s		0.08s 0.012s												
T'do O.C. FIELD TIME CONST. 2s														
Ta ARMATURE TIME CONST. 0.017s														
T	Ta ARMATURE TIME CONST.				0.0	17s								

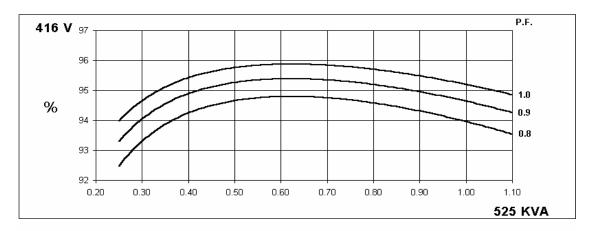

50 Hz

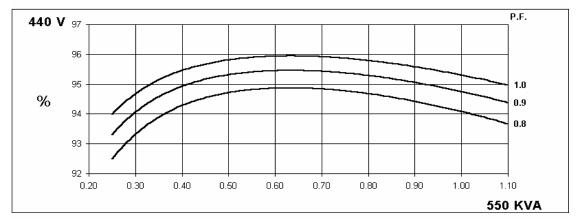

HCI534C/544C

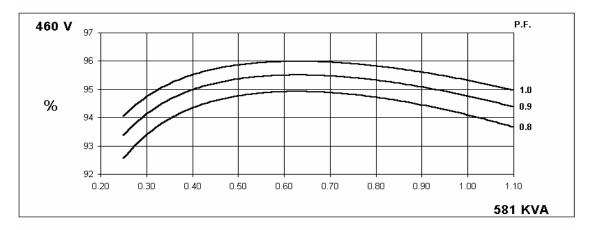

STAMFORD

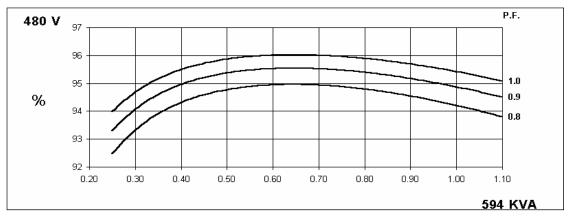

Winding 311

THREE PHASE EFFICIENCY CURVES

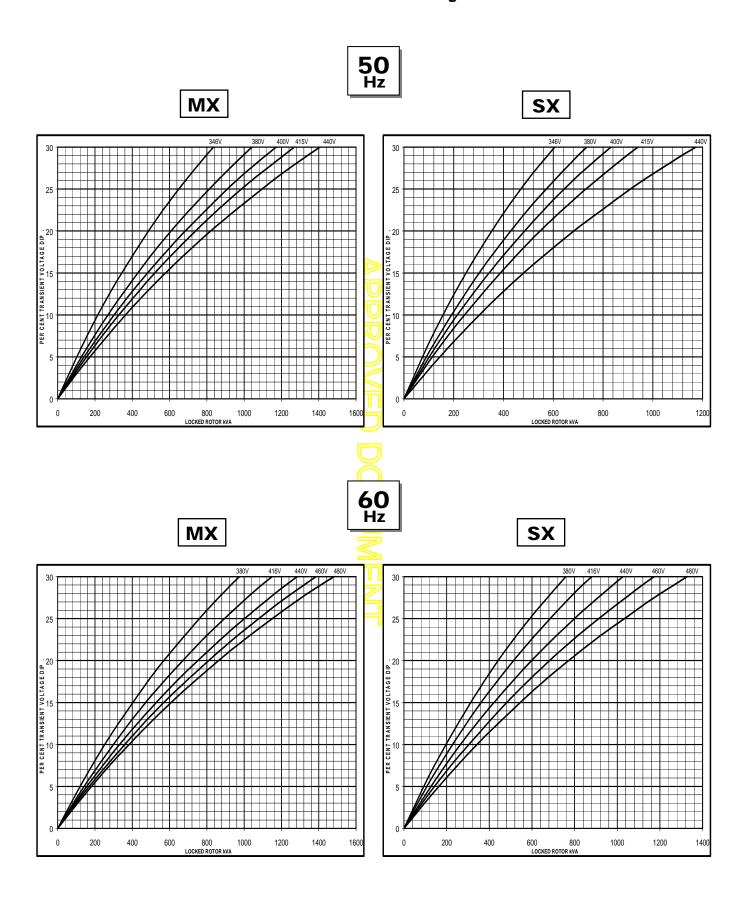

60 Hz


HCI534C/544C


STAMFORD

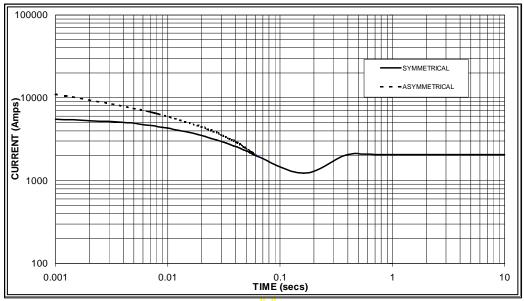

Winding 311

THREE PHASE EFFICIENCY CURVES

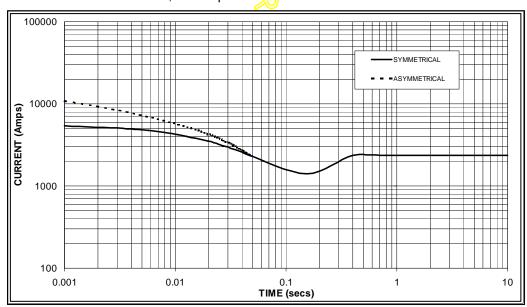


HCI534C/544C

Winding 311


Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.



Sustained Short Circuit = 2,050 Amps

60 Hz

Sustained Short Circuit = 2,350 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage:

50	Hz	60Hz						
Voltage	Factor	Voltage	Factor					
380v	X 1.00	416v	X 1.00					
400v	X 1.03	440v	X 1.06					
415v	X 1.05	460v	X 1.12					
440v	X 1.07	480v	X 1.20					

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit:

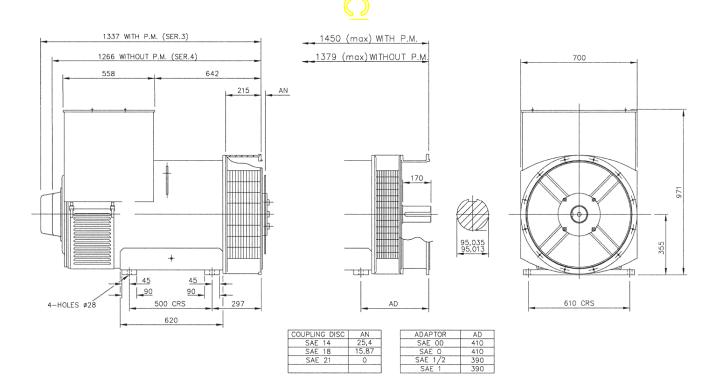
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connections the following multipliers should be applied to current values as shown:

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732


HCI534C/544C

Winding 311 0.8 Power Factor

RATINGS

	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	Sta	andby -	150/40	°C	Sta	andby -	163/27	°C
5	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
50 Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	400	445	400	400	455	500	455	450	478	512	478	478	500	520	500	495
	kW	320	356	320	320	364	400	364	360	382	410	382	382	400	416	400	396
	Efficiency (%)	94.5	94.3	94.8	94.9	94.0	93.8	94.4	94.6	93.8	93.7	94.2	94.4	93.5	93.6	94.0	94.3
	kW Input	339	378	338	337	387	426	386	381	408	437	406	405	428	444	425	420
6	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Н	Parallal Star (\/)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
''	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	481	500	531	538	525	550	581	594	550	581	613	625	569	600	631	644
	kW	385	400	425	430	420	440	465	475	440	465	490	500	455	480	505	515
	Efficiency (%)	94.3	94.4	94.4	94.5	94.0	94.1	94.1	94.2	93.8	93.9	93.9	94.0	93.6	93.7	93.7	93.9
	kW Input	408	424	450	455	447	468	494	504	469	495	522	532	486	512	539	549

DIMENSIONS

APPROVED DOCUMENT

STAMFORD

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom

Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.