## Water Softener

Water softening is the removal of calcium, magnesium, and certain other metal cations which exist in hard water. Use of soft water extends the lifetime of pipes and fittings by reducing or eliminating scale build-up. Water softening is usually achieved using lime softening or ion-exchange resins. When water is referred to as 'hard' this simply means, that it contains more minerals especially calcium and magnesium than ordinary water.
The degree of water hardness increases, when more calcium and magnesium dissolve.
Magnesium and calcium are positively charged ions. Because of their presence, other positively charged ions will dissolve less easily in hard water compared to water that does not contain calcium and magnesium.
PACKMAN'SWater softeners are specific ion exchangers that are designed to remove ions, which are positively charged. Softeners mainly remove calcium (Ca2+) and magnesium (Mg2+) ions. Calcium and magnesium are often referred to as 'hardness ions'. Softeners are sometimes even applied to remove iron. The softening devices areable to remove up to five milligrams per liter ( $5 \mathrm{mg} / \mathrm{L}$ ) of dissolved iron. Softeners can operate automaticly, semi-automaticly, or manually. Each type is rated based on the amount of hardness it can remove before regeneration is necessary. A water softener collects hardness minerals it's conditioning tank and from time to time flushes them away to drain. When an ion exchanger is applied for water softening, it will replace the calcium and magnesium ions in the water with other ions, for instance sodium or potassium. These ions are added to the ion exchanger's reservoir as sodium and potassium salts ( NaCl and KCl ).
After a period of time, the resin beads become coated with minerals and must be cleaned or "recharged" to become effective again. The water softener's timer and/or controls automatically run the appliance through cycles to backwash, recharge, and rinse the beads. A control that is designed to recharge based on the amount of processed water is better than a timer that cycles the water on a scheduled basis because it operates based on need, not time. The result is savings in energy, salt, and water.
During a backwash cycle, the flow of water is reversed so that water is forced down the risertube to the bottom ofthetankso that it willflow up through the
resin beads in the tank．The unit flushes and expands the resin，washing off the beads and then carrying the minerals out through a drainpipe．A＂brine tank＂is paired with the mineral tank to help with the regeneration process． During the＂brine draw＂cycle，salty water（brine）is pumped from the brine tank into the resin tank．As the water flows down through the resin beads，it exchanges sodium with the hard－water ions，regenerating the electrical at－ traction of the resin beads．Then，when the brine tank is empty，a slow rinse begins，followed by a more forceful fast rinse．With both of these cycles，fresh water rinses excess brine from the resin and expels it down the drain．Then the brine tank is refilled．

## PACKMAN＇S Water Softener＇s Properties

PACKMAN＇S Water Softeners are made of steel plate of ST37 grade（recom－ mended for the manufacturing of pressure vessels with no direct fire con－ tact）．In case of customer＇s request，the filters can be made of 17 MN 4 （suit－ able for boiler construction）without any change in product＇s price．The Water Softeners are vertical cylinders in different capacities and two types of single and double systems．
The installed geyser on top of the water softeners，uniforms the water flow and balanus the water pass through out the filter．

## Manufacturing Standards

ASME Sec VIII，Div． 1 is observed in the construction of water softener tanks．

## Torispherical／Elliptical Head

PACKMAN＇S water softener tank＇s head are Torispherical．This type of head has a longer life and a higher pressure strength compared to other shapes with the same thickness．The production price per kilo of these heads can reach to twice the price ratio of the usual heads on the market．

## Welding Procedure

Welding is done with Swedish ISBU submerged arcwelding equipment．After constructing the tank and welding the lugs，the body of the tank is connect－ ed to the heads using a submerged welding method．In addition，the heads are welded internally and externally，which increases their life \＆strength．In
the root pass, the TIG, argon or other welding methods with the 6010 cellulose electrode is used. The EW7018 electrode is used in welding fill pass. The submerged method with EW7018 electrodes in used in the cover pass.

## Nozzles

The nozzles used in PACKMAN'S water softeners are all made of brass, and for each square meter of resins, surface, about 50 nozzles are placed, which makes the optimum washing procedure possible.

## Silica and Resin of water softener

PACKMAN'S water softener's resin is the PUROLITE with a high ion exchange rate coefficient and a high quality silica with a purity of $98 \%$ which is used at the bottom of the tank.

## Product Capacity Calculation \& Selection:

water Softener Capacity (Grain):

(Flow Rate (Gpm) x60 xWashing cycle (hr)xWater Hardness(ppm)

## 17.1


(6)www.famcocorp.com

E-mail: info@famcocorp.com

| MODEL |  |  | $\begin{gathered} \text { PWS } \\ -3 \end{gathered}$ | $\begin{gathered} \text { PWS- } \\ 6 \end{gathered}$ | $\begin{gathered} \text { PWS- } \\ 9 \end{gathered}$ | PWS12 | PWS15 | PWS18 | $\begin{gathered} \text { PWS- } \\ 21 \end{gathered}$ | PWS- <br> 24 | PWS30 | PWS36 | PWS45 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPECIFICATIONS |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CAPACITY (Grain) |  |  | 30,000 | 60,000 | 90,000 | 120,000 | 150,000 | 180,000 | 210,000 | 240,000 | 300,000 | 360,000 | 450,000 |
| Vessel Diameter (D) (mm) |  |  | 270 | 270 | 300 | 400 | 450 | 500 | 500 | 550 | 600 | 600 | 650 |
| (N1,N2) <br> Inlet/Outlet Size (in.) |  |  | $3 / 4$ " | $3 / 4$ " | $3 / 4$ " | 1" | 1" | 1, 1/2" | 1,1/2" | 1,1/2" | 1,1/2" | 1,1/2" | 2" |
| $\begin{aligned} & \stackrel{\#}{0} \\ & 0 \\ & 3 \\ & 3 \\ & \frac{0}{4} \end{aligned}$ | Service Flow Rates | average (gpm) | 2.7 | 5.3 | 8.1 | 10.6 | 13.3 | 15.9 | 18.6 | 21.2 | 26.5 | 31.8 | 39.8 |
|  |  | Maximum (gpm) | 4.4 | 8.8 | 13.3 | 17.7 | 22.1 | 26.5 | 30.9 | 35.3 | 44.2 | 53.1 | 66.3 |
|  | Regeneration ( NaCl Injection) | Brine Flow Rate (gpm) | 0.4 | 0.9 | 1.3 | 1.8 | 2.2 | 2.7 | 3.1 | 3.5 | 4.4 | 5.3 | 6.6 |
|  |  | Min.Req. Duration (min.) | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
|  | Resin | Flow Rate (gpm) | 1.6 | 3.2 | 4.8 | 6.4 | 8.1 | 9.5 | 11.1 | 12.7 | 15.9 | 19.1 | 23.9 |
|  |  | Min.Req. <br> Duration <br> (min.) | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 |
| Resin |  | Bed Height (mm) | 440 | 870 | 1060 | 800 | 790 | 760 | 890 | 840 | 890 | 1060 | 1130 |
|  |  | Volume(lit) | 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 250 | 300 | 375 |
| Silica Sand |  | Bed Height (mm) | $3 \times 70$ | $3 \times 100$ | $3 \times 100$ |
|  |  | Weight (Kg) | 21 | 21 | 24 | 45 | 54 | 69 | 69 | 81 | 99 | 138 | 165 |
| Brine <br> ( $10 \% \mathrm{NaCl}$ Solu- <br> tion) |  | $\mathrm{Nacl}(\mathrm{Kg})$ | 4 | 8 | 11 | 15 | 19 | 23 | 26 | 30 | 38 | 45 | 56 |
|  |  | Water (lit) | 34 | 68 | 101 | 135 | 169 | 203 | 236 | 270 | 338 | 405 | 506 |
|  |  | Tank <br> Volume(lit) | 70 | 100 | 220 | 220 | 220 | 300 | 300 | 350 | 500 | 600 | 600 |
|  | (H) Total Height (mm) |  | 1,350 | 1,900 | 2,150 | 1,850 | 1,850 | 1,850 | 2,000 | 1,950 | 2,050 | 2,250 | 2,450 |
|  | Occupied Space (mm x mm) |  | $\begin{gathered} 560 \\ x \\ 450 \end{gathered}$ | $\begin{gathered} 560 \\ x \\ 450 \end{gathered}$ | $\begin{gathered} 580 \\ x \\ 500 \end{gathered}$ | $\begin{gathered} 790 \\ x \\ 650 \end{gathered}$ | $\begin{gathered} 830 \\ x \\ 700 \end{gathered}$ | $\begin{gathered} 880 \\ x \\ 740 \end{gathered}$ | $\begin{gathered} 880 \\ x \\ 740 \end{gathered}$ | $\begin{gathered} 960 \\ x \\ 790 \end{gathered}$ | $\begin{gathered} 950 \\ x \\ 780 \end{gathered}$ | $\begin{gathered} 950 \\ x \\ 780 \end{gathered}$ | $\begin{gathered} 1300 \\ x \\ 890 \end{gathered}$ |
| Total Pressure Drop (kPa) |  |  | 8.2 | 31.2 | 44.3 | 26.7 | 25.5 | 23.8 | 32.8 | 29.8 | 32.3 | 47.8 | 53.8 |

www.famcocorp.com



Capacity (Grain)
Vessel Diameter (D) (mm)
(N1,N2)
Inlet/Outlet Size (in.)

|  | Service <br> Flow <br> Rates |
| :--- | :--- |
|  |  |
|  | Regenera- <br> tion (NaCl |
|  | Injection) |


| Resin |  | Bed Height (mm) | 1020 | 1240 | 1260 | 1270 | 1200 | 1220 | 1260 | 1280 | 1350 | 1420 | 1490 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Volume (lit) | 450 | 625 | 800 | 1000 | 1250 | 1500 | 1675 | 1825 | 2075 | 2500 | 3000 |
| Silica Sand |  | Bed Height (mm) | $3 \times 100$ |
|  |  | Weight (Kg) | 219 | 249 | 315 | 390 | 513 | 606 | 657 | 708 | 762 | 876 | 995 |
| Brine ( $10 \% \mathrm{NaCl}$ Solution) |  | $\begin{aligned} & \mathrm{Nacl} \\ & (\mathrm{Kg}) \end{aligned}$ | 68 | 94 | 120 | 150 | 188 | 225 | 251 | 274 | 313 | 375 | 450 |
|  |  | Water (lit) | 608 | 844 | 1080 | 1350 | 1688 | 2025 | 2261 | 2464 | 2813 | 3375 | 4050 |
|  |  | Tank Volume(lit) | 800 | 1000 | 1500 | 1700 | 2000 | 3000 | 3000 | 3000 | 3300 | 4200 | 5000 |
|  | (H) Total Height (mm) |  | 2400 | 2650 | 2750 | 2800 | 2800 | 2950 | 3050 | 3050 | 3150 | 3300 | 3450 |
|  | Occupied Space (mm x mm) |  | $\begin{gathered} 1380 \\ x \\ 1000 \end{gathered}$ | $\begin{gathered} 1510 \\ \times \\ 1060 \end{gathered}$ | $\begin{gathered} 1600 \\ \times \\ 1150 \end{gathered}$ | $\begin{gathered} 1770 \\ \times \\ 1240 \end{gathered}$ | $\begin{gathered} 1900 \\ \times \\ 1360 \end{gathered}$ | $\begin{gathered} 2230 \\ x \\ 1470 \end{gathered}$ | $\begin{gathered} 2280 \\ x \\ 1500 \end{gathered}$ | $\begin{gathered} 2330 \\ \times \\ 1560 \end{gathered}$ | $\begin{gathered} 2380 \\ x \\ 1610 \end{gathered}$ | $\begin{gathered} 2480 \\ \times \\ 1710 \end{gathered}$ | $\begin{gathered} 2580 \\ \times \\ 1810 \end{gathered}$ |
| Total Pressure Drop (kPa) |  |  | 43.9 | 65.3 | 67.0 | 67.5 | 60.8 | 62.3 | 66.3 | 68.6 | 76.5 | 83.2 | 92.7 |

