



# MPZ - Refrigeration 1 cyl. range Medium temperature 50 - 60 Hz

R404A / R507A

SELECTION & APPLICATION GUIDELINES

# CONTENTS

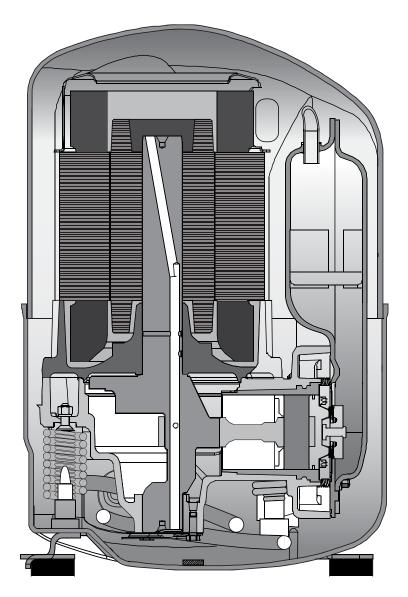


| MPZ RECIPROCATING COMPRESSORS                              | •    |
|------------------------------------------------------------|------|
| COMPRESSOR MODEL DESIGNATION                               | рб   |
| Compressor reference                                       | рб   |
| SPECIFICATIONS                                             | n 7  |
| Technical specifications                                   | •    |
| Approvals & certificates                                   |      |
| Nominal performance                                        | •    |
| OPERATING ENVELOPE                                         | р9   |
| OUTLINE DRAWINGS                                           | p 10 |
| ELECTRICAL CONNECTIONS AND WIRING                          |      |
| Three phase electrical characteristics                     | •    |
| Single phase electrical characteristics                    | •    |
| Nominal capacitor values and relays                        | p 12 |
| PSC wiring                                                 | p 12 |
| CSR wiring                                                 | p 12 |
| Suggested wiring diagrams                                  | p 13 |
| Soft starters                                              | p 14 |
| Voltage application range                                  | •    |
| Terminal box                                               | p 14 |
| SYSTEM DESIGN RECOMMENDATIONS                              | p 15 |
| Piping design                                              | p 15 |
| Operating limits                                           | р 16 |
| Operating voltage & cycle rate                             |      |
| Liquid refrigerant control & charge limits                 | p 18 |
| SOUND AND VIBRATION MANAGEMENT                             |      |
| Sound                                                      |      |
| Vibration                                                  | p 20 |
| INSTALLATION AND SERVICE                                   |      |
| System cleanliness                                         | •    |
| Compressor handling, mounting and connection to the system | •    |
| System pressure test                                       | •    |
| Leak detection                                             |      |
| Vacuum pull down - moisture removal                        | p 22 |
| ORDERING INFORMATION AND PACKAGING                         | p 24 |
| Ordering                                                   | p 24 |
| Packaging                                                  | p 24 |

Dantoss

### **MPZ RECIPROCATING COMPRESSORS**

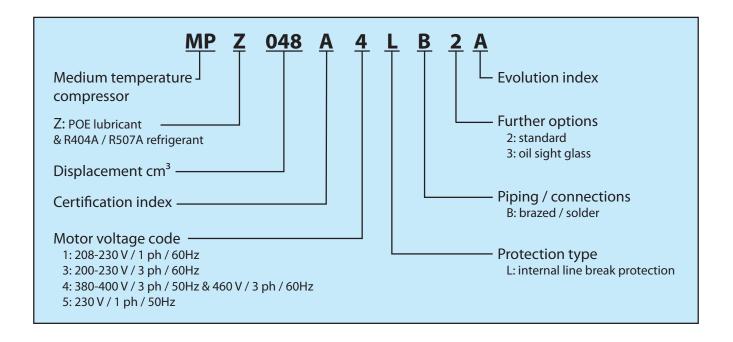
The MPZ series from Danfoss Commercial Compressors is a range of hermetic reciprocating compressors for medium / high evaporating temperature applications.


The MPZ is engineered as a true refrigeration compressor, optimised at  $-10^{\circ}$ C with an extended application range from  $-30^{\circ}$ C to  $+10^{\circ}$ C.

The Danfoss MPZ series is specifically designed for use with R404A / R507A, using 160MPZ polyolester oil as lubricant.

The level of performance combined with extra low sound characteristics rank the MPZ series among the best compressors in their class. Further, its new shell housing with solder connections is designed to be as compact as possible.

The compressors can be operated at a return gas temperature (suction gas temperature) of 20°C on most of its application window.


The electrical motor is fully suction gas cooled which means that additional body cooling is not required. The compressors can therefore be installed in a sealed compartment and even can be insulated with an acoustic insulation hood when the installation requirements call for extra low sound characteristics.



Danfoss

# **COMPRESSOR MODEL DESIGNATION**

# **Compressor reference**





# **SPECIFICATIONS**

# **Technical specifications**

| Compressor | D       | visplacemer         | nt                  | Cyl.<br>number | Oil<br>charge | Net<br>weight * |
|------------|---------|---------------------|---------------------|----------------|---------------|-----------------|
| model      | cm³/rev | m³/h at<br>2900 rpm | m³/h at<br>3500 rpm |                | dm³           | kg              |
| MPZ038     | 38      | 6.6                 | 8.0                 | 1              | 1.1           | 25.2            |
| MPZ048     | 48      | 8.4                 | 10.1                | 1              | 1.1           | 25.2            |
| MPZ054     | 54      | 9.4                 | 11.3                | 1              | 1.1           | 25.2            |
| MPZ061     | 61      | 10.6                | 12.7                | 1              | 1.1           | 25.75           |
| MPZ068     | 68      | 11.8                | 14.3                | 1              | 1.1           | 25.75           |

\* Net weight apply only on code 4

## Approvals and certificates

Danfoss MPZ compressors comply with the following approvals and certificates. Certificates are listed on the product datasheets: http://www.danfoss.com/odsg

| CE (European Directive)                         | All models       |
|-------------------------------------------------|------------------|
| UL<br>(Underwriters Laboratories) CTUS          | All 60 Hz models |
| CCC (China Compulsory<br>Product Certification) | All 50 Hz models |
| Gost<br>certificate (for Russia)                | All 50 Hz models |

<u>Danfvisi</u>

# **SPECIFICATIONS**

# Nominal performance data - R404A

#### 50 Hz

|                  | To = -10°C, Tc = 45°C, RGT= 20°C, SC = 0 K |                     |                       | To = -10°C, Tc = 45 °C , SH = 10 K, SC = 0 K |                          |                     | To = 5°C, Tc = 50°C , RGT = 20°C, SC = 0 K |            |                          |                     |                       |            |
|------------------|--------------------------------------------|---------------------|-----------------------|----------------------------------------------|--------------------------|---------------------|--------------------------------------------|------------|--------------------------|---------------------|-----------------------|------------|
| Compressor model | Cooling<br>capacity<br>W                   | Power<br>input<br>W | Current<br>input<br>A | COP<br>W/W                                   | Cooling<br>capacity<br>W | Power<br>input<br>W | Current<br>input<br>A                      | COP<br>W/W | Cooling<br>capacity<br>W | Power<br>input<br>W | Current<br>input<br>A | COP<br>W/W |
| MPZ038           | 2995                                       | 1419                | 2.9                   | 2.11                                         | 2795                     | 1419                | 2.86                                       | 2.0        | 5049                     | 1837                | 3.4                   | 2.75       |
| MPZ048           | 4005                                       | 1896                | 3.5                   | 2.11                                         | 3738                     | 1896                | 3.49                                       | 2.0        | 6446                     | 2515                | 4.4                   | 2.56       |
| MPZ054           | 4464                                       | 2154                | 3.9                   | 2.07                                         | 4167                     | 2154                | 3.86                                       | 1.9        | 7329                     | 2906                | 5.0                   | 2.52       |
| MPZ061           | 5030                                       | 2522                | 4.9                   | 1.99                                         | 4695                     | 2522                | 4.86                                       | 1.9        | 8080                     | 3357                | 6.2                   | 2.41       |
| MPZ068           | 5707                                       | 2905                | 5.5                   | 1.96                                         | 5327                     | 2905                | 5.48                                       | 1.8        | 9027                     | 3928                | 7.1                   | 2.30       |

To: Evaporating temperature at dew point (saturated suction temperature)

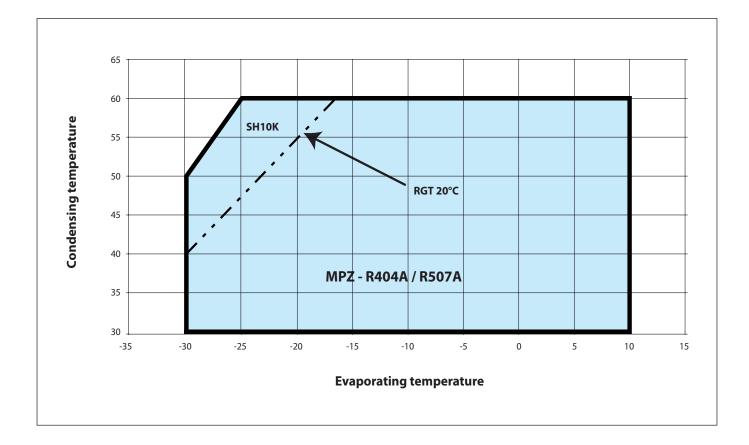
Tc: Condensing temperature at dew point (saturated discharge temperature)

SC: Subcooling, SH: Superheat 3 phase - 400 V

#### 60 Hz

|                  | To = -10°C, Tc = 45°C, RGT= 20°C, SC = 0 K |                     |                       | To = -10°C, Tc = 45 °C , SH = 10 K, SC = 0 K |                          |                     | To = 5°C, Tc = 50°C, RGT = 20°C, SC = 0 K |            |                          |                     |                       |            |
|------------------|--------------------------------------------|---------------------|-----------------------|----------------------------------------------|--------------------------|---------------------|-------------------------------------------|------------|--------------------------|---------------------|-----------------------|------------|
| Compressor model | Cooling<br>capacity<br>W                   | Power<br>input<br>W | Current<br>input<br>A | COP<br>W/W                                   | Cooling<br>capacity<br>W | Power<br>input<br>W | Current<br>input<br>A                     | COP<br>W/W | Cooling<br>capacity<br>W | Power<br>input<br>W | Current<br>input<br>A | COP<br>W/W |
| MPZ038           | 3545                                       | 1657                | 2.7                   | 2.14                                         | 3309                     | 1657                | 2.71                                      | 2.0        | 5925                     | 2175                | 3.3                   | 2.72       |
| MPZ048           | 4680                                       | 2271                | 3.4                   | 2.06                                         | 4368                     | 2271                | 3.43                                      | 1.9        | 7554                     | 2975                | 4.3                   | 2.54       |
| MPZ054           | 5306                                       | 2576                | 3.8                   | 2.06                                         | 4952                     | 2576                | 3.81                                      | 1.9        | 8593                     | 3523                | 5.0                   | 2.44       |
| MPZ061           | 5912                                       | 2978                | 4.7                   | 1.99                                         | 5518                     | 2978                | 4.71                                      | 1.9        | 9581                     | 3975                | 5.9                   | 2.41       |
| MPZ068           | 6765                                       | 3410                | 5.2                   | 1.98                                         | 6314                     | 3410                | 5.21                                      | 1.9        | 10773                    | 4668                | 6.9                   | 2.31       |

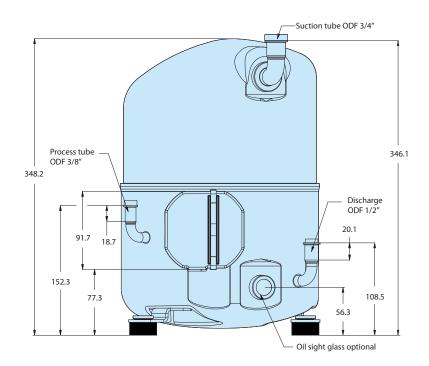
To: Evaporating temperature at dew point (saturated suction temperature)


Tc: Condensing temperature at dew point (saturated discharge temperature)

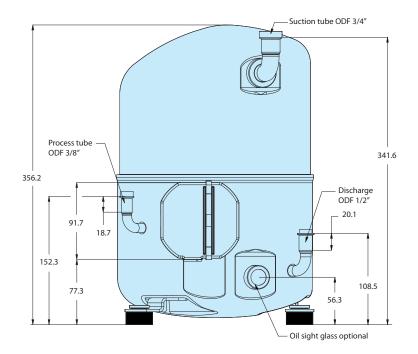
SC: Subcooling,

SH: Superheat 3 phase - 460 V




# **OPERATING ENVELOPE**

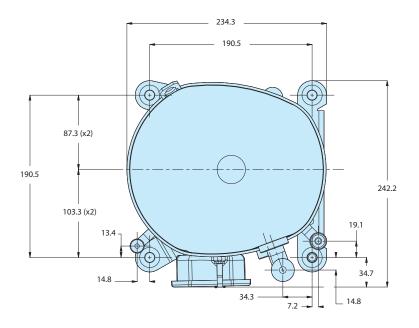





# **OUTLINE DRAWINGS**

# Side view, 3 phase models




# Side view, single phase models





# **OUTLINE DRAWINGS**

# Top view, all models



# Silent block

Grommet compression not included (around 1 mm)



anto

# **ELECTRICAL CONNECTIONS AND WIRING**

# Three phase electrical characteristics

|            | LRA - Locked Rotor<br>Current (A) |      | MCC Maximu<br>Curre | m Continuous<br>nt (A) | Winding resistance (Ω)<br>(±7% at 20°C) |     |  |
|------------|-----------------------------------|------|---------------------|------------------------|-----------------------------------------|-----|--|
| Motor Code | 3                                 | 4    | 3                   | 4                      | 3                                       | 4   |  |
| MPZ038     | 71.6                              | 29.2 | 11.5                | 6.3                    | 1.15                                    | 5.6 |  |
| MPZ048     | 71.6                              | 29.2 | 12.2                | 6.0                    | 1.15                                    | 5.6 |  |
| MPZ054     | 71.6                              | 29.2 | 12.5                | 6.4                    | 1.15                                    | 5.6 |  |
| MPZ061     | 95                                | 38.1 | 19                  | 8.5                    | 0.9                                     | 4.3 |  |
| MPZ068     | 95                                | 38.1 | 19.6                | 9.0                    | 0.9                                     | 4.3 |  |

# Single phase electrical characteristics

|            | LRA - Locked Rotor<br>Current (A) |    | MCC - Maximum<br>Continuous Current (A) |      | Winding resistance ( $\Omega$ ) ( $\pm$ 7 % at 20° C) |       |      |       |
|------------|-----------------------------------|----|-----------------------------------------|------|-------------------------------------------------------|-------|------|-------|
| Motor Code | 1 5                               |    | 1                                       | 5    |                                                       | 1     | 5    |       |
| Winding    |                                   |    |                                         |      | run                                                   | start | run  | start |
| MPZ038     | 70.5                              | 56 | 16.7                                    | 14   | 0.63                                                  | 2.13  | 0.75 | 2.54  |
| MPZ048     | 70.5                              | 56 | 17.1                                    | 17   | 0.63                                                  | 2.13  | 0.75 | 2.54  |
| MPZ054     | 70.5                              | 56 | 24.6                                    | 19   | 0.63                                                  | 2.13  | 0.75 | 2.54  |
| MPZ061     | 87.5                              | 61 | 30                                      | 26   | 0.56                                                  | 1.73  | 0.69 | 1.95  |
| MPZ068     | 87.5                              | 61 | 32.2                                    | 25.5 | 0.56                                                  | 1.73  | 0.69 | 1.95  |

# Nominal capacitor values and relays

- \* PSC: Permanent Split Capacitor CSR: Capacitor Start Run
- (1) Run capacitors: 440 volts
- (2) Start capacitors: 330 Volts

# **PSC** wiring

#### **CSR** wiring

| 50 Hz / 60 Hz | PSC/CSR*              | CSR                     | only      |
|---------------|-----------------------|-------------------------|-----------|
| Models        | Run<br>capacitors (1) | Start<br>capacitors (2) | Start     |
|               | (A) μF                | (B) µF                  | relay     |
| MPZ038        | 40                    | 100                     |           |
| MPZ048        | 40                    | 100                     |           |
| MPZ054        | 40                    | 100                     | RVA-6AMKL |
| MPZ061        | 45                    | 100                     | ]         |
| MPZ068        | 45                    | 100                     |           |

**Note**: the single phase compressor motors are internally protected by a temperature / current sensing bimetallic protector, which senses the main and start winding currents, and also the winding temperature. Once the protector has

PSC wiring may be used for refrigerant circuits with capillary tubes or expansion valves with bleed ports. Pressure equalisation must be ensured

CSR wiring provides additional motor torque at start-up, by the use of a start capacitor in combination with the run capacitor. This system can be used for refrigerant circuits with capillary tubes or expansion valves. The start capacitor is only connected during the starting operation, a potential relay is used to disconnect it after the start sequence.

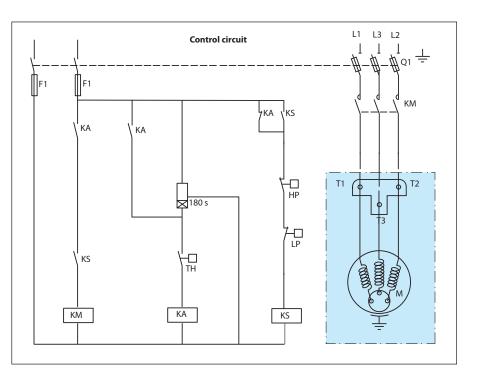
Some applications with high differential pressure can require a very tripped, it may take up to two to four hours to reset and restart the compressor.

Check that power supply corresponds to compressor characteristics (refer to compressor nameplate).

before start-up because of the low starting torque characteristics of this system.

high starting torque. For such cases the CSR starting kit can be converted to a very high starting torque kit by an additional start capcitor of 100  $\mu$ F parallel to the start capacitor of the CSR kit. This configuration can also be used to reduce erratic starting at unfavourable conditions such as very low ambient temperature or weak voltage.

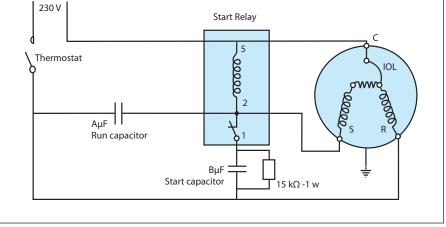
| Models         | Very high starting torque configuration |                       |                 |  |  |  |  |
|----------------|-----------------------------------------|-----------------------|-----------------|--|--|--|--|
| Models         | Run capacitors (µF)                     | Start Capacitors (µF) | Start relay     |  |  |  |  |
| MPZ038-048-054 | 40                                      | 100 + 100             | <b>RVA6AMKL</b> |  |  |  |  |


<u>Danfoss</u>

# **ELECTRICAL CONNECTIONS AND WIRING**

### Three phase


Suggested wiring diagram with safety lock-out relay


| Control device The                           | Н |
|----------------------------------------------|---|
| Optional short cycle timer (3 min) 5 pts 180 | s |
| Control relay KA                             | Ą |
| Compressor contactor                         | Λ |
| Safety lock out relay K                      | S |
| High pressure switch HI                      | Ρ |
| Low pressure switchLl                        | Ρ |
| Fused disconnect                             | 1 |
| FusesF                                       | 1 |
| Compressor motor N                           | Λ |



### Single phase

PSC wiring





CSR wiring

Dantos

# **ELECTRICAL CONNECTIONS AND WIRING**

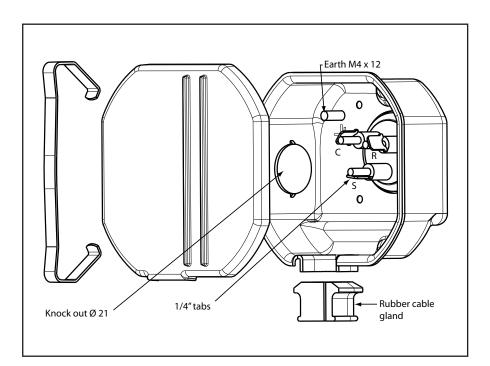
#### Soft starters

Starting current of Danfoss MPZ 3phase compressors can be reduced by using a Danfoss electronic soft starter. The starting current can be reduced by up to 50% depending on the compressor model. Also mechanical stresses that occur at starting are reduced which increases the life of the internal components.

For details of the Danfoss CI-tronic<sup>™</sup> MCI soft starters, please refer to literature DKACT.PD.C50.

Use of a soft starter requires that the number of starts is limited to 6 per hour. HP/LP pressure equalisation is required before starting.

# Voltage application range


| Motor Code | Nominal voltage     | Voltage application range |
|------------|---------------------|---------------------------|
| 1          | 208 - 230 V / 60 Hz | 187 - 253 V               |
| 3          | 200 - 230 V / 60 Hz | 180 - 253 V               |
|            | 380 - 400 V / 50 Hz | 340 - 440 V               |
| 4          | 460 V / 60 Hz       | 414 - 506 V               |
| 5          | 230 V / 50 Hz       | 207 - 253 V               |

### **Terminal box**

The MPZ terminal box has 1/4" faston terminal tabs for power supply. Note the C, S & R positions which are different from those in MTZ series compressors.

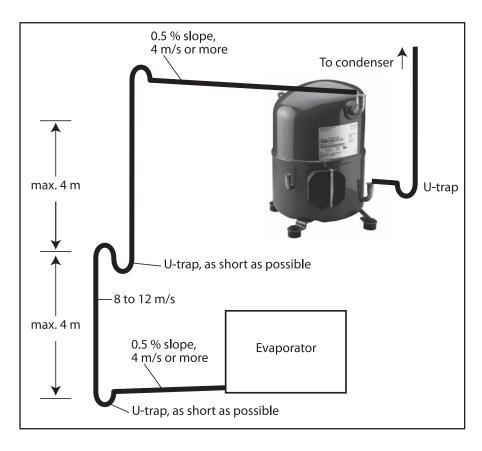
The main entry is at the bottom side through the rubber cable gland, however a  $\emptyset$  21 mm knock out at the

left side can be used for additional cable entry. The terminal box IP rating according to CEI 529 is IP54 provided that adapted diameter cable is used. The rubber cable gland internal diameter is 12 mm. For instance cable reference H07RN-F 4G2.5 is well adapted to this cable gland.





#### Piping design


Oil in a refrigeration circuit is required to lubricate moving parts in the compressor. During normal system operation small quantities of oil will continuously leave the compressor, with the discharge gas. With good system piping design this oil will return to the compressor. As long as the amount of oil circulating through the system is small it will contribute to good system operation and improved heat transfer efficiency. However, too large amounts of oil in the system will have a negative effect on condenser and evaporator efficiency. If, in a

Horizontal suction line sections shall have a slope of 0.5% in the direction of refrigerant flow (5 mm per meter). The cross-section of horizontal suction lines shall be such that the resulting gas velocity is at least 4 m/s. In vertical risers, a gas velocity of 8 to 12 m/s is required to ensure proper oil return. A U-trap is required at the foot of each vertical riser. If the riser is higher than 4 m, additional U-traps are required for each additional 4 meters. The length poorly designed system, the amount of oil returning to the compressor is lower than the amount of oil leaving the compressor, the compressor will become starved of oil and the condenser, evaporator and/or refrigerant lines will become filled with oil. In such situations, additional oil charge will only correct the compressor oil level for a limited period of time and increase the amount of surplus oil in the rest of the system.

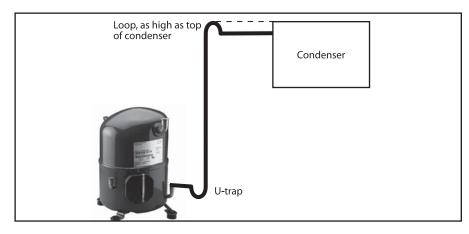
Only correct piping design can ensure a good oil balance in the system.

of each U-trap must be as short as possible to avoid the accumulation of excessive quantities of oil (see figure below).

Gas velocities higher than 12 m/s will not contribute to significantly better oil return. However they will cause higher noise levels and result in higher suction line pressure drops which will have a negative effect on the system capacity.



#### **Suction lines**


The pipe sizes selected for specific systems may differ from these recommended sizes.

It is recommended that the suction lines are insulated to limit suction gas superheat.

#### **Discharge line**

When the condenser is mounted above the compressor, a loop above the condenser and a U-trap close to

the compressor are required to prevent liquid draining from the condenser into the discharge line during standstill.



#### For new installations with MPZ compressors Danfoss recommends using the Danfoss DML 100%molecular sieve, solid core filter drier. Molecular sieve filter driers with loose beads from third party suppliers shall be avoided.

For servicing of existing installations where acid formation is present the

Danfoss DCL solid core filter driers containing activated alumina are recommended.

The drier is to be oversized rather than undersized. When selecting a drier, always take into account its capacity (water content capacity), the system refrigerating capacity and the system refrigerant charge.

#### **Operating limits**

#### **High Pressure**

**Filter driers** 

A high pressure safety switch is required to stop the compressor, should the discharge pressure exceed the values shown in the table below. The high pressure switch can be set to lower values depending on the application and ambient conditions. The HP switch must either be in a lockout circuit, or be a manual reset device to prevent compressor cycling around the high pressure limit. When a discharge valve is used, the HP switch must be connected to the service valve gauge port, which cannot be isolated.

Low pressure

A low pressure safety switch is recommended to avoid compressor operation at too low suction pressure.

Danfoss

# Low ambient temperature operation

At low ambient temperatures, the condensing temperature and condensing pressure in air cooled condensers will decrease.

This low pressure may be insufficient to supply enough liquid refrigerant to the evaporator. As a result the evaporator temperature will strongly decrease with the risk of frosting. At compressor start-up, the compressor can pull a deep vacuum and it can be switched off by the low pressure protection. Depending on the low pressure switch setting and delay timer, short cycling can occur. To avoid these problems, several solutions are possible, based on reducing condenser capacity:

Indoor location of condensers

• Liquid flooding of condensers (note: this solution requires extra refrigerant charge, which can introduce other problems. A non-return valve in the discharge line is required and special care should be taken when designing the discharge line.)

• Reduce air flow to condensers.

Other problems can also occur when the compressor is operating at low ambient temperature. During shut down periods, liquid refrigerant can migrate to a cold compressor.

For such conditions a belt-type crankcase heater is strongly recommended.

Note that with 100% suction gas cooled motors, Danfoss MPZ compressors can be externally insulated.

Refer to section "Liquid refrigerant migration & charge limits" for more details.

# Operating voltage and cycle rate

| in the table on page 14. The very<br>applied to the motor terminals<br>always be within these table<br>The maximum allowable very<br>unbalance for 3-phase compre-                                              | tage which in turn leads to overheating and<br>must possible motor damage.<br>mits.<br>tage Voltage unbalance is given by the<br>ssors formula:                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| % VOLTAGE UNBALANCE:                                                                                                                                                                                            | V <sub>AVG</sub> - V1-2  + V <sub>AVG</sub> - V1-3  + V <sub>AVG</sub> - V2-3   x 100                                                                                                                                          |
|                                                                                                                                                                                                                 | 2 xV <sub>AVG</sub>                                                                                                                                                                                                            |
| Vavg = Mean voltage of phases 1, 2 and 2<br>V1-2 = Voltage between phases 1 and 2                                                                                                                               | V1-3 = Voltage between phases 1 and 3<br>V2-3 = Voltage between phases 2 and 3                                                                                                                                                 |
| per hour (6 when a soft start acce<br>is used). A higher number reduc<br>service life of the motor-comp<br>unit. If necessary, use an anti-<br>cycle timer in the control circuit.<br>A time-out of three minut | ssory minimum compressor running time in<br>order to provide proper oil return and<br>sufficient motor cooling after starting.<br>hort-<br>Note that the oil return rate varies as a<br>function of the system design.<br>s is |
|                                                                                                                                                                                                                 | Vavg = Mean voltage of phases 1, 2 and 3                                                                                                                                                                                       |

Danfoss

| Liquid refrigerant control<br>and charge limits | Refrigeration compressors are basi-<br>cally designed as gas compressors.<br>Depending on the compressor de-<br>sign and operating conditions, most<br>compressors can also handle a limited<br>amount of liquid refrigerant. Danfoss<br>MPZ compressors have a large internal<br>volume and can therefore handle rela-<br>tively large amounts of liquid refriger-<br>ant without major problems. However<br>even when a compressor can handle<br>liquid refrigerant, this will not be fa-<br>vourable to its service life. Liquid re-                                                                                                                                                                                                                                                                                                                                                               | frigerant can dilute the oil, wash oil out<br>of bearings and result in high oil carry<br>over, resulting in loss of oil from the<br>sump. Good system design can limit<br>the amount of liquid refrigerant in the<br>compressor, which will have a positive<br>effect on the compressor service life.<br>Liquid refrigerant can enter a com-<br>pressor in different ways, with differ-<br>ent effects on the compressor.                                                                                                                                                                                                                                             |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Off-cycle migration                             | During system standstill and after<br>pressure equalisation, refrigerant will<br>condense in the coldest part of the<br>system. The compressor can easily<br>be the coldest spot, for example<br>when it is placed outside in low<br>ambient temperatures. After a while,<br>the full system refrigerant charge<br>can condense in the compressor<br>crankcase. If the entire system is at a<br>uniform temperature and there are<br>no obstructions to vapor flow during<br>the off cycle the refrigerant charge<br>will slowly migrate to the compressor<br>because of the solubility of refrigerant<br>in the oil. If other system components<br>are located at a higher level, this<br>process can be even faster because<br>gravity will assist the liquid refrigerant<br>to flow back to the compressor. When<br>the compressor is started, the pressure<br>in the crankcase decreases rapidly. | At lower pressures the oil holds less<br>refrigerant, and as a result part of the<br>refrigerant will violently evaporate<br>from the oil, causing the oil to foam.<br>This process is often called "boiling".<br>The negative effects of migration on<br>the compressor are:<br>• oil dilution by liquid refrigerant<br>oil dilution by liquid refrigerant<br>• oil foam, transported by refrigerant<br>gas and discharged into the system,<br>causing loss of oil and in extreme<br>situations risk for oil slugging<br>• in extreme situations with high<br>system refrigerant charge, liquid<br>slugging could occur (liquid entering<br>the compressor cylinder). |
| Liquid floodback during<br>operation            | During normal and stable system<br>operation, refrigerant will leave the<br>evaporator in a superheated condition<br>and enter the compressor as a<br>superheated vapour.<br>Normal superheat values at<br>compressor suction are 5 to 30 K.<br>However the refrigerant leaving the<br>evaporator can contain an amount<br>of liquid refrigerant due to different<br>reasons:<br>• wrong dimensioning, wrong setting<br>or malfunction of expansion device                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>evaporator fan failure or blocked air<br/>filters.</li> <li>In these situations, liquid refrigerant<br/>will continuously enter the<br/>compressor.</li> <li>The negative effects from continuous<br/>liquid floodback are: <ul> <li>permanent oil dilution</li> <li>in extreme situations with high<br/>system refrigerant charge and large<br/>amounts of floodback, liquid slugging<br/>could occur.</li> </ul> </li> </ul>                                                                                                                                                                                                                                |

Ianti

Liquid floodback at change over cycles in reversible heat pumps

#### **Crankcase heater**



In heat pumps, change over from cooling to heating cycles, defrost and low load short cycles may lead to liquid refrigerant floodback or saturated refrigerant return conditions.

Tests must be conducted to ensure that the appropriate oil temperature is maintained under all ambient conditions.

According our standard recommendation oil temperature has to be maintained 10K above the saturated LP temperature of the refrigerant.

Under extreme conditions such as very low ambient temperature a belt type crankcase heater could be used. The belts crankcase heater must be positioned on the compressor shell as close as possible to the oil sump to ensure good heat transfer to the oil.

Belt crankcase heaters are not selfregulating. Control must be applied to energise the belt heater once the compressor has been stopped and then to de-energise it while the The negative effects are:

oil dilution

• in extreme situations with high system refrigerant charge and large amounts of floodback, liquid slugging could appear.

compressor is running. The belt heater must be energised 12 hours before restarting the compressor following an extended shutdown period.

If the crankcase heater is not able to maintain the oil temperature at 10 K above the saturated LP temperature of the refrigerant during off cycles or if repetitive floodback is present, a Liquid Line Solenoid Valve (LLSV) + pump-down cycle is required, possibly in conjunction with a suction accumulator.

The use of the trickle circuit wiring is allowed on single phase MPZ compressors. This specific wiring allows heating of the compressor during off period, feeding the auxiliary winding through the "trickle" capacitor with a small current.

|           |                | Standard wiring             | Trickle wiring            |                              |  |  |
|-----------|----------------|-----------------------------|---------------------------|------------------------------|--|--|
| Frequency | Models         | Permanent capacitor<br>(µf) | Trickle capacitor<br>(μf) | Additional capacitor<br>(µf) |  |  |
| 230V      | MPZ038-048-054 | 40                          | 30                        | 10                           |  |  |
| 50 Hz     | MPZ061-068     | 45                          | 35                        | 10                           |  |  |
| 208-230V  | MPZ038-048-054 | 40                          | 25                        | 15                           |  |  |
| 60 Hz     | MPZ061-068     | 45                          | 25                        | 20                           |  |  |

In refrigeration applications, the Liquid Line Solenoid Valve (LLSV) is highly recommended. During the off-cycle, the LLSV isolates the liquid charge in the condenser side, thus preventing refrigerant transfer or excessive migration of refrigerant into the compressor. Furthermore, when using

A suction accumulator offers considerable protection against refrigerant floodback at start-up, during operation and in hot gas defrost systems.

The suction accumulator must be selected in accordance with

a LLSV in conjunction with a pumpdown cycle, the quantity of refrigerant in the low-pressure side of the system will be reduced.

A pump-down cycle design is required when evaporators are fitted with electric defrost heaters.

the accumulator manufacturer recommendations. As a general rule, Danfoss recommends to size the accumulator for at least 50% of the total system charge. Tests however must be conducted to determine the optimal size.

# Liquid line solenoid valve & pump-down

Suction accumulator

Dantos

#### SOUND AND VIBRATION MANAGEMENT

#### Sound

Running compressors vibrate and generate refrigerant gas pulsations. These vibrations, when coupled to ambient air, are heard as sound. Those vibrations and pulsations conducted through connecting tubing as well as the vibrations reaching the compressor feet continue to other parts of the system and structure where they may also generate sound. Danfoss MPZ compressors are 100% suction gas cooled, and require no body cooling, thus they can be insulated. For inside mounted compressors, sound insulation of the enclosed location of the compressor is an alternative to sound insulation of the compressor.

For treatment of vibration please refer to the next section.

|        | Sound power level at 50 Hz<br>dB(A) | Sound power level at 60 Hz<br>dB(A) |
|--------|-------------------------------------|-------------------------------------|
| MPZ038 | 71                                  | 74                                  |
| MPZ048 | 68                                  | 71                                  |
| MPZ054 | 68                                  | 71                                  |
| MPZ061 | 68                                  | 71                                  |
| MPZ068 | 68                                  | 71                                  |

Sound power level for Danfoss MPZ with R404A, motor code 4, Te =  $-10^{\circ}$ C, TC =  $45^{\circ}$ C

#### Vibrations

There are best practises to check whether vibration paths are designed in the best possible way.

**Grommets**: the mounting grommets delivered with the compressor should always be used. They reduce the vibration transmitted by the compressor mounting feet to the base frame.

The compressor should never be directly mounted to the base frame without the grommets, otherwise high vibration transmission will occur and the compressor service life will be reduced.

The base on which the compressor is mounted should be sufficiently rigid and well connected to the main frame of the application to ensure the full effectiveness of the mounting grommets.

**Tubes**: suction and discharge lines must have adequate flexibility in 3 planes. Eventually vibration absorbers may be required. Take care that the tubes are correctly formed and located in front of the connector before fitting to avoid any constraint on the compressor. Using a shock loop with a generous bending diameter is a good means of vibration transmission through the piping. Soft copper tubing and smaller diameter tubing should be used to make smooth flexible connections.

Care must be taken to avoid tubing having resonant frequencies close to those of the compressor frequency.

Vibration is also transmitted by refrigerant gas pulsation. Danfoss MPZ compressors have built in mufflers to reduce this vibration.

Note: MPZ compressors have been designed and qualified for stationary equipment used in refrigeration applications.

Danfoss doesn't warrant these compressors for use in mobile applications, such as trucks, busses, railways, subways, etc...

INSTALLATION AND SERVICE



#### System cleanliness

System contamination is one of the main factors affecting equipment reliability and compressor service life.

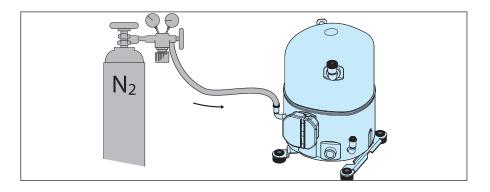
Therefore it is important to ensure system cleanliness when manufacturing a refrigeration system. During the manufacturing process, system contamination can be caused by:

- Brazing and welding oxides
- Filings and particles from
- removing burrs from pipe-work
- Brazing flux
- Moisture and air.

Only use clean and dehydrated refrigeration grade copper tubes and silver alloy brazing material. Clean all parts before brazing and always purge nitrogen or CO, through the pipes during brazing to prevent oxidation. If flux is used, take every precaution to prevent the leakage of flux into the piping. The use of gas flux core or flux coated braze wire or rod instead of brush applied paste flux is strongly recommended. Do not drill holes (e.g. for schräder valves) in parts of the installation that are already completed, when filings and burrs can not be removed. Carefully follow the instructions below regarding brazing, mounting, leak detection, pressure test and moisture removal. All installation and service work shall only be done by qualified personnel respecting all procedures and using tools (charging systems, tubes, vacuum pump, etc.) dedicated for the refrigerant used.

#### Compressor handling, mounting and connection to the system

**Compressor handling** Danfoss MPZ compressors are provided with a lifting lug. This lug should always be used to lift the compressor. Once the compressor is installed, the compressor lifting lug should never be **Compressor mounting** Mount the compressor on a horizontal plane with a maximum slope of 3 degrees. All compressors are supplied with four rubber mounting grommets, each complete with metal sleeves and nuts and bolts. Refer to the outline drawings on page 10. **Compressor connection to** New compressors have a protective nitrogen holding charge. The suction the system and discharge caps should only be removed just before connecting the compressor to the installation to avoid air and moisture entering the


compressor.

Whenever possible the compressor must be the last component to be integrated in the system. When all brazing is finished and when the total used to lift the complete installation. Keep the compressor in an upright position during shipping and handling.

These grommets largely attenuate the compressor vibration transmitted to the base frame. The compressor must always be mounted with these grommets. Recommended mounting torque: 12 - 18 Nm.

system is ready, the compressor caps can be removed and the compressor can be connected to the system with a minimum exposure to ambient air. In this situation nitrogen or  $CO_2$  must be purged through the compressor via the process tube to prevent air and moisture ingress. Purging must start when the caps are removed and maintained during the brazing process.

# **INSTALLATION AND SERVICE**



It is recommended that an inert gas such as nitrogen be used for pressure testing. Always use the appropriate pressure regulator with gas cylinders. Any attempt to use a high pressure gaz supply without a suitable pressure regulator can lead to personal injury or death as well as system damage. Dry air may also be used but care should be

> Perform a leak detection test on the complete system by means of electronic detector after circuit pressurization with nitrogen and R404A.

The low side test pressure must not exceed 25 bar(g). Should a leak be discovered, proceed with repair steps and repeat the leak detection.

It is forbidden to use other gasses such as oxygen, dry air or acetylene as these gasses can form an inflammable

Moisture obstructs the proper functioning of the compressor and the refrigeration system.

Air and moisture reduce service life and increase condensing pressure, and cause excessively high discharge temperatures, which can destroy the lubricating properties of the oil. Air and moisture also increase the risk of acid formation, giving rise to copper plating. All these phenomena can cause mechanical and electrical compressor failure. taken since it can form an inflammable mixture with the compressor oil. When performing a system pressure test, the maximum allowed pressure for the different components should not be exceeded.

For Danfoss MPZ compressors the maximum test pressure is 25 bar(g).

mixture. Never use CFC or HCFC refrigerants for leak detection of HFC systems.

**Note 1**: Leak detection with refrigerant may not be allowed in some countries. Check local regulations.

**Note 2**: Leak detecting additives shall not be used as they may affect the lubricant properties.

Warranty may be voided if leak detecting additives have been used.

To eliminate these factors, a vacuum pull-down according to the procedure below is recommended:

**1.** Whenever possible (if valves are present) the compressor must be kept isolated from the system.

**2.** After the leak detection, the system must be pulled-down under a vacuum of 500 microns (0.67 mbar). A two stage vacuum pump shall be used with a capacity appropriate to the system volume. It is recommended to use connection lines with a large diameter and to connect these to the 3/8" process tube connection.

# System pressure test

Leak detection

Vacuum pull-down moisture removal



|                       | <ol> <li>When the vacuum level of 500 micron is reached, the system must be isolated from the vacuum pump. Wait 30 minutes during which the system pressure should not rise. When the pressure rapidly increases, the system is not leak tight. A new leak detection must be performed and the vacuum pull-down procedure should be restarted from step 1. When the pressure slowly increases, this indicates the presence of moisture. In this case step 2 and 3 should be repeated.</li> <li>If suction and discharge line valves are used, connect the compressor to the system by opening the valves.</li> </ol> | <ul> <li>5. Break the vacuum with nitrogen or the final refrigerant.</li> <li>6. Repeat step 2 and 3 on the total system. At commissioning, system moisture content may be up to 100 ppm. During operation the filter drier must reduce this to a level &lt; 20 ppm.</li> <li>Warning : do not use a megohmmeter or apply power to the compressor while it is under vacuum, as this may cause motor winding damage. Never run the compressor under vacuum as it may cause compressor motor burnout.</li> </ul> |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refrigerant charging  | "Near-azeotropic" refrigerant mixtures<br>such as R404A must always be charged<br>in liquid phase. For the initial charge,<br>the compressor must not run. Charge<br>refrigerant as close as possible to the<br>nominal system charge before starting<br>the compressor. Then slowly add<br>refrigerant in the liquid phase, on the<br>low pressure side as far away as possible<br>from the running compressor.                                                                                                                                                                                                     | The refrigerant charge quantity must<br>be suitable for both winter and summer<br>operation. Refer also to section<br>"Protection against flooded starts<br>and liquid floodback" for information<br>about refrigerant charge limits.<br><b>Warning</b> : when a liquid line solenoid<br>valve is used, the vacuum in the low<br>pressure side must be broken before<br>applying power to the system.                                                                                                          |
| Oil sight glass       | Standard MPZ compressors are<br>delivered without oil sight glass. The<br>sight glass can be omitted in most<br>OEM applications which have run<br>approval tests to ensure correct oil<br>and refrigerant circulation.<br>However, the capacity of the MPZ<br>range offers the possibility to use them<br>in locally constructed refrigeration                                                                                                                                                                                                                                                                      | applications with remote evaporators,<br>oil separator and suction accumulator.<br>In such case, the MPZ with optional<br>sight glass allows for verification of<br>the circuit after commissioning and<br>during maintenance.<br>The oil sight glass is welded in the<br>compressor shell. It does not allow for<br>any other connections.                                                                                                                                                                    |
| Suction gas superheat | The minimum suction gas superheat<br>measured on the suction tube 20 cm<br>far from the compressor body is 8K.<br>Lower superheat values increase the<br>risk of unwanted liquid floodback to<br>the compressor.<br>For very low superheat values an<br>electronically controlled expansion<br>valve is recommended.                                                                                                                                                                                                                                                                                                 | High superheat can be accepted but in<br>these cases, tests have to be performed<br>to check that the maximum discharge<br>temperature of 130°C will not be<br>exceeded. Note that high superheat<br>values decrease the compressor<br>application envelope and system<br>performance.                                                                                                                                                                                                                         |

<u>Danfoss</u>

# **ORDERING INFORMATION AND PACKAGING**

# Ordering -Single pack

|            |             | Code no.<br>Motor voltage code |              |                      |          |  |  |  |
|------------|-------------|--------------------------------|--------------|----------------------|----------|--|--|--|
|            |             |                                |              |                      |          |  |  |  |
| Compressor | Decian      | 1                              | 3            | 4                    | 5        |  |  |  |
| model      | Design      | Nominal voltage                |              |                      |          |  |  |  |
|            |             | 208-230/1/60                   | 200-230/3/60 | 460/3/60<br>400/3/50 | 230/1/50 |  |  |  |
| MPZ038     | Standard    | 120F0093                       | 120F0118     | 120F0047             | 120F0143 |  |  |  |
| INIPZ038   | Sight Glass | 120F0098                       | 120F0123     | 120F0052             | 120F0148 |  |  |  |
| MPZ048     | Standard    | 120F0094                       | 120F0119     | 120F0048             | 120F0144 |  |  |  |
|            | Sight Glass | 120F0099                       | 120F0124     | 120F0053             | 120F0149 |  |  |  |
| MPZ054     | Standard    | 120F0095                       | 120F0120     | 120F0049             | 120F0145 |  |  |  |
|            | Sight Glass | 120F0100                       | 120F0125     | 120F0054             | 120F0150 |  |  |  |
| MPZ061     | Standard    | 120F0096                       | 120F0121     | 120F0050             | 120F0146 |  |  |  |
| MP2061     | Sight Glass | 120F0101                       | 120F0126     | 120F0055             | 120F0151 |  |  |  |
| MPZ068     | Standard    | 120F0097                       | 120F0122     | 120F0051             | 120F0147 |  |  |  |
|            | Sight Glass | 120F0102                       | 120F0127     | 120F0056             | 120F0152 |  |  |  |

# Ordering -Industrial pack

|                     |             | Code no.           |              |                      |          |  |  |  |
|---------------------|-------------|--------------------|--------------|----------------------|----------|--|--|--|
| Compressor<br>model |             | Motor voltage code |              |                      |          |  |  |  |
|                     | Design      | 1                  | 3            | 4                    | 5        |  |  |  |
|                     | Design      | Nominal voltage    |              |                      |          |  |  |  |
|                     |             | 208-230/1/60       | 200-230/3/60 | 460/3/60<br>400/3/50 | 230/1/50 |  |  |  |
| MPZ038              | Standard    | 120F0103           | 120F0128     | 120F0057             | 120F0153 |  |  |  |
| IVIPZUSO            | Sight Glass | 120F0108           | 120F0133     | 120F0062             | 120F0158 |  |  |  |
| MPZ048              | Standard    | 120F0104           | 120F0129     | 120F0058             | 120F0154 |  |  |  |
|                     | Sight Glass | 120F0109           | 120F0134     | 120F0063             | 120F0159 |  |  |  |
| MPZ054              | Standard    | 120F0105           | 120F0130     | 120F0059             | 120F0155 |  |  |  |
|                     | Sight Glass | 120F0110           | 120F0135     | 120F0064             | 120F0160 |  |  |  |
| MPZ061              | Standard    | 120F0106           | 120F0131     | 120F0060             | 120F0156 |  |  |  |
| MPZ061              | Sight Glass | 120F0111           | 120F0136     | 120F0065             | 120F0161 |  |  |  |
| MPZ068              | Standard    | 120F0107           | 120F0132     | 120F0061             | 120F0157 |  |  |  |
| IVIPZUOO            | Sight Glass | 120F0112           | 120F0137     | 120F0066             | 120F0162 |  |  |  |

# Packaging

| Model  | Single pack                 |                         |                 | Multipack               |                         |                    | Industrial pack |                         |                         |                    |
|--------|-----------------------------|-------------------------|-----------------|-------------------------|-------------------------|--------------------|-----------------|-------------------------|-------------------------|--------------------|
|        | Dimen-<br>sions<br>(mm)     | Gross<br>weight<br>(kg) | Nbr             | Dimen-<br>sions<br>(mm) | Gross<br>weight<br>(kg) | Static<br>stacking | Nbr             | Dimen-<br>sions<br>(mm) | Gross<br>weight<br>(kg) | Static<br>stacking |
| MPZ038 |                             |                         |                 |                         |                         |                    |                 |                         |                         |                    |
| MPZ048 | 385<br>×<br>280<br>×<br>360 | 20.5                    | 8               | 1150<br>x<br>800        | 223                     | 4                  | 12              | 1150<br>x<br>800        | 317                     | 4                  |
| MPZ054 |                             | 30                      |                 |                         |                         |                    |                 |                         |                         |                    |
| MPZ061 |                             |                         | x<br>510<br>227 |                         |                         | x<br>520           | 222             |                         |                         |                    |
| MPZ068 |                             | 20.9                    |                 |                         | 227                     |                    |                 |                         | 323                     |                    |

Single pack: Multipack: Industrial pack: Nbr: One compressor in a cardboard box.

A full pallet of single packs. A full pallet of unpacked compressors.

Number of compressors per pallet.



# The Danfoss product range for the refrigeration and air conditioning industry

Danfoss Refrigeration & Air Conditioning is a worldwide manufacturer with a leading position in industrial, commercial and supermarket refrigeration as well as air conditioning and climate solutions. We focus on our core business of making quality products, components and systems that enhance performance and reduce total life cycle costs – the key to major savings.



Controls for Commercial Refrigeration



Industrial Automation



Sub-Assemblies



Controls for Industrial Refrigeration



Household Compressors



Thermostats



Electronic Controls & Sensors



Commercial Compressors



Brazed plate heat exchanger

We are offering a single source for one of the widest ranges of innovative refrigeration and air conditioning components and systems in the world. And, we back technical solutions with business solution to help your company reduce costs, streamline processes and achieve your business goals.

Danfoss A/S • www.danfoss.com

#### Danfoss Commercial Compressors http://cc.danfoss.com

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.